category-extras-0.53.6: Various modules and constructs inspired by category theoryContentsIndex
Search:
&&&
.<=.
.>>
:*
:**:
:*:
:+
:++:
:+:
:.:
:~>
:~~>
=**<<
=*<<
=<<<
=>>
>$<
>>$<<
>>*
>>**=
>>*=
>>>=
ACompF
1 (Type/Class)
2 (Data Constructor)
adjointToLan
adjointToRan
Adjunction
adjunctionToCodensity
adjunctionToDensity
Algebra
algebraInterpreter
all
Allegory
ana
anaCofree
Ap
Apo
apo
ApoT
apply
array
askC
associate
associateComposition
associatePreCartesian
associatePreCoCartesian
Associative
Bialgebra
biana
bicata
Biff
1 (Type/Class)
2 (Data Constructor)
Bifunctor
bihylo
BiKleisli
1 (Type/Class)
2 (Data Constructor)
bimap
bimapPreCartesian
bimapPreCoCartesian
bipostpro
biprepro
Bizap
bizap
bizapWith
Bizip
bizip
bizipWith
Both
1 (Data Constructor)
2 (Type/Class)
braid
Braided
braidPreCartesian
braidPreCoCartesian
buildCoideal
Cartesian
cascade
cast
cata
cataFree
CBind
cbind
CCC
CComonad
CCopointed
cdist
CDistributes
cduplicate
CDyad
cdyid
CExtend
cextend
cextract
CFunctor
chrono
cjoin
cmap
CMonad
Coalgebra
coalgebraCointerpreter
coapply
coassociate
coassociateComposition
coassociatePreCartesian
coassociatePreCoCartesian
Coassociative
CoCartesian
CoCCC
Cocone
1 (Type/Class)
2 (Data Constructor)
cocurry
Codensity
codensityToAdjunction
codensityToRan
codiag
coelgot
cofix
Cofree
cofree
Coideal
coideal
coidealize
coidl
coidr
Cointerpreter
cointerpreterCoalgebra
CointerpreterT
CoKleisli
1 (Type/Class)
2 (Data Constructor)
colambek
colift
Colimit
1 (Data Constructor)
2 (Type/Class)
Comonad
ComonadCofree
ComonadCoideal
ComonadContext
ComonadReader
ComonadTrans
Comonoidal
Comp
CompF
1 (Type/Class)
2 (Data Constructor)
CompH
1 (Type/Class)
2 (Data Constructor)
compose
composedAdjointToLan
composedAdjointToRan
composedAdjunctionToDensity
composeLan
composeRan
Composition
Cone
Const2
1 (Type/Class)
2 (Data Constructor)
Context
1 (Data Constructor)
2 (Type/Class)
ContextT
1 (Type/Class)
2 (Data Constructor)
ContraF
1 (Type/Class)
2 (Data Constructor)
ContraFunctor
contramap
converse
Copointed
Coreader
1 (Data Constructor)
2 (Type/Class)
CoreaderT
1 (Type/Class)
2 (Data Constructor)
corep
Corepresentable
Cospan
1 (Type/Class)
2 (Data Constructor)
costrength
counbizip
counit
counitCCC
counitCoCCC
Couniversal
1 (Data Constructor)
2 (Type/Class)
couniversalIdentity
couniversalize
counzip
CoYoneda
1 (Data Constructor)
2 (Type/Class)
coYonedaToLan
Cozip
cozip
CPointed
creturn
curry
decompose
decomposeLan
decomposeRan
Density
1 (Data Constructor)
2 (Type/Class)
densityToAdjunction
densityToComposedAdjunction
densityToLan
destroyIdeal
diag
Dialgebra
DiKleisli
1 (Type/Class)
2 (Data Constructor)
dimap
Dinatural
Discrete
Dist
dist
distAna
distApoT
distCata
DistCompF
1 (Type/Class)
2 (Data Constructor)
distFutu
distGApo
distGApoT
distHisto
distParaT
distPointer
distribute
Distributes
Distributive
distZygo
distZygoT
Dual
1 (Data Constructor)
2 (Type/Class)
duplicate
dyna
Either
EitherF
1 (Data Constructor)
2 (Type/Class)
EitherT
1 (Type/Class)
2 (Data Constructor)
elgot
exo
Exp
1 (Data Constructor)
2 (Type/Class)
experiment
ExpFunctor
extend
extract
extractCouniversal
extractMap
extractUniversal
factor
Faithful
ffmap
first
first'
Fix
FixF
FixH
Flip
1 (Type/Class)
2 (Data Constructor)
fplus
Free
free
fromAlgebra
fromBialgebra
fromCoalgebra
fromCodensity
fromDensity
fromLan
fromRan
fsplit
fst
Full
FunctorPlus
FunctorSplit
FunctorZero
futu
fzero
fzip
fzipWith
GAlgebra
GApo
GApoT
GBialgebra
GCoalgebra
GDialgebra
getC
g_ana
g_apo
g_biana
g_bicata
g_bihylo
g_bipostpro
g_biprepro
g_cata
g_chrono
g_futu
g_histo
g_hylo
g_meta
g_para
g_postpro
g_postpro_apo
g_postpro_futu
g_prepro
g_prepro_histo
g_prepro_para
g_prepro_zygo
g_zygo
HAdjunction
HAlgebra
hana
HasIdentity
HasInitialObject
Hask
HasLimit
hassociateComposition
HasTerminalObject
hbind
hbuild
hcata
HCoalgebra
hcoassociateComposition
hcolambek
HComonad
hcompose
HComposition
HCopointed
hcounit
hdecompose
hdestroy
hduplicate
hextend
hextract
hfmap
HFunctor
hhylo
histo
hjoin
hlambek
hleftAdjunct
HMonad
HPointed
hreturn
hrightAdjunct
hunit
hylo
Hyp
Hyper
iap
iapIxMonad
ibind
Ideal
ideal
idealize
identityBialgebraB
identityBialgebraF
idl
idr
iduplicate
iextend
iextract
iget
igets
ijoin
ilift
imap
imfix
imodify
implus
improveCofree
improveFree
imzero
InB
index
InF
inFree
InH
initiate
inl
inr
Interpreter
interpreterAlgebra
InterpreterT
invDiscrete
inW
iput
ireturn
isMap
isSimple
isTotal
IxApplicative
IxComonad
IxCont
1 (Type/Class)
2 (Data Constructor)
IxContT
1 (Type/Class)
2 (Data Constructor)
IxCopointed
IxFunctor
IxMonad
IxMonadCont
IxMonadFix
IxMonadPlus
IxMonadState
IxMonadTrans
IxMonadZero
IxPointed
IxState
1 (Type/Class)
2 (Data Constructor)
IxStateT
1 (Type/Class)
2 (Data Constructor)
Join
1 (Type/Class)
2 (Data Constructor)
kana
kbuild
kcata
kdestroy
lambek
Lan
1 (Data Constructor)
2 (Type/Class)
lanToAdjoint
lanToComposedAdjoint
lanToCoYoneda
lanToDensity
Left
leftAdjunct
leftDomain
Lift
1 (Type/Class)
2 (Data Constructor)
liftAlgebra
liftCoalgebra
liftCodensity
liftColimit
liftComp
liftCoYoneda
liftCtx
liftDensity
liftDialgebra
liftFlip
liftH
liftLimit
liftOf
liftW
Limit
limit
lowerAlgebra
lowerCoalgebra
lowerCodensity
lowerDensity
LowerH
1 (Type/Class)
2 (Data Constructor)
lowerYoneda
Map
1 (Data Constructor)
2 (Type/Class)
mapDiscrete
mapW
meet
meta
1 (Function)
2 (Function)
mkAp
mkOn
mkPAp
modifyC
modifySupply
MonadFree
MonadIdeal
Monoidal
Mutual
1 (Type/Class)
2 (Data Constructor)
Natural
newEnumSupply
newNumSupply
newSupply
Of
1 (Type/Class)
2 (Data Constructor)
On
outB
outCofree
outF
outH
outM
PAp
pap
PApplicative
papPMonad
Para
para
parallelW
ParaT
paugment
pbind
pcoaugment
PCofree
pcofree
PComonad
PCopointed
pextend
pextract
PFree
pfree
PFunctor
PHyper
1 (Type/Class)
2 (Data Constructor)
pjoin
PMonad
point
Pointed
PointedCompF
1 (Type/Class)
2 (Data Constructor)
Pointer
1 (Data Constructor)
2 (Type/Class)
PostCompF
1 (Type/Class)
2 (Data Constructor)
PostFold
postFold
postpro
postpro_apo
postpro_futu
postTransform
PostUnfold
postUnfold
PPointed
PreCartesian
PreCoCartesian
PreCompF
1 (Type/Class)
2 (Data Constructor)
PreFold
preFold
premap
prepro
prepro_histo
prepro_para
prepro_zygo
preTransform
preturn
PreUnfold
preUnfold
putC
QFunctor
Ran
1 (Type/Class)
2 (Data Constructor)
ranToAdjoint
ranToCodensity
ranToComposedAdjoint
ranToYoneda
Refl
Relator
rep
repAdjunction
Representable
reset
Right
rightAdjunct
rightDomain
runAp
runBiff
runBiKleisli
runCocone
runCofree
runCoKleisli
RunComonadCofree
runCompF
runCompH
runConst2
runContext
runContextT
runContraF
runCoproductF
runCoreader
runCoreaderT
runCospan
runDiKleisli
runDual
runEitherT
runExp
runFlip
runFree
runIxCont
runIxContT
runIxContT_
runIxCont_
runIxState
runIxStateT
runJoin
runkana
runkcata
runLift
runMap
RunMonadFree
runMutual
runOf
runOn
runPAp
runPCofree
runPFree
runPHyper
runProductF
runRan
runSpan
runYoneda
second
second'
sequenceW
shift
snd
Span
1 (Type/Class)
2 (Data Constructor)
split
split2
split3
split4
Stream
strength
Supply
supplyLeft
supplyRight
supplyValue
swap
Symmetric
synchro
TabulatedAllegory
tabulateLeft
tabulateRight
terminate
toCodensity
toDensity
toLan
toRan
Trialgebra
unbizip
uncocurry
uncorep
uncurry
unfoldW
unfzip
unit
UnitalAllegory
unitCCC
unitCoCCC
Universal
1 (Data Constructor)
2 (Type/Class)
universalIdentity
universalize
unmap
unrep
unrepAdjunction
Void
void
xmap
Yoneda
1 (Type/Class)
2 (Data Constructor)
yonedaToRan
Zap
zap
zapWith
Zip
Zygo
zygo
ZygoT
|||