 categoryextras0.53.6: Various modules and constructs inspired by category theory  Contents  Index 

Control.Functor.Combinators.Biff  Portability  portable  Stability  experimental  Maintainer  Edward Kmett <ekmett@gmail.com> 



Description 



Documentation 

newtype Biff p f g a b 
Constructors   Instances  (Functor f, Symmetric Hask p) => Symmetric Hask (Biff p f f)  (Functor f, Braided Hask p) => Braided Hask (Biff p f f)  Functor f => PCopointed (PCofree f)  FunctorPlus f => PPointed (PCofree f)  Functor f => PPointed (PFree f)  FunctorPlus f => PApplicative (PCofree f)  Functor f => PApplicative (PFree f)  FunctorPlus f => PMonad (PCofree f)  Functor f => PMonad (PFree f)  Functor f => PComonad (PCofree f)  (Bizip p, Zip f, Zip g) => Bizip (Biff p f g)  (QFunctor q Hask Hask, Functor g) => QFunctor (Biff q f g) Hask Hask  (Functor f, PFunctor p Hask Hask) => PFunctor (Biff p f g) Hask Hask  (Functor f, Bifunctor p Hask Hask Hask, Functor g) => Bifunctor (Biff p f g) Hask Hask Hask  (Bizap p q, Zap f g, Zap i j) => Bizap (Biff p f i) (Biff q g j)  (Functor f, Bifunctor p Hask Hask Hask, Functor g) => Functor (Biff p f g a) 



type On p f = Biff p f f 

runOn :: On p f a b > p (f a) (f b) 

mkOn :: p (f a) (f b) > On p f a b 

type PAp p = Biff p Identity 

runPAp :: PFunctor p Hask Hask => PAp p f a b > p a (f b) 

mkPAp :: PFunctor p Hask Hask => p a (f b) > PAp p f a b 

type PCofree = PAp (,) 

runPCofree :: PCofree f a b > (a, f b) 

pcofree :: (a, f b) > PCofree f a b 

type PFree = PAp Either 

runPFree :: PFree f a b > Either a (f b) 

pfree :: Either a (f b) > PFree f a b 

Produced by Haddock version 2.1.0 