category-extras-0.53.6: Various modules and constructs inspired by category theoryContentsIndex
Control.Functor.Extras
Portabilitynon-portable (rank-2 polymorphism)
Stabilityexperimental
MaintainerEdward Kmett <ekmett@gmail.com>
Description
Synopsis
type Dist f g = forall a. f (g a) -> g (f a)
type :~> f g = forall a. f a -> g a
type Natural f g = f :~> g
type :~~> f g = forall a b. f a b -> g a b
type Dinatural f g = forall a. f a a -> g a a
class PostFold m f where
postFold :: f (m (f a)) -> m (f a)
class PostUnfold w f where
postUnfold :: w (f a) -> f (w (f a))
class PreFold f m where
preFold :: f (m (f a)) -> f (m a)
class PreUnfold f w where
preUnfold :: f (w a) -> f (w (f a))
class Distributes f g where
dist :: f (g a) -> g (f a)
class Functor f => FunctorZero f where
fzero :: f a
class FunctorZero f => FunctorPlus f where
fplus :: f a -> f a -> f a
class Functor f => FunctorSplit f where
fsplit :: f a -> (f a, f a)
Documentation
type Dist f g = forall a. f (g a) -> g (f a)
type :~> f g = forall a. f a -> g a
A natural transformation between functors f and g.
type Natural f g = f :~> g
type :~~> f g = forall a b. f a b -> g a b
A transformation natural in both sides of a bifunctor.
type Dinatural f g = forall a. f a a -> g a a
Dinatural transformations
class PostFold m f where
Methods
postFold :: f (m (f a)) -> m (f a)
class PostUnfold w f where
Methods
postUnfold :: w (f a) -> f (w (f a))
class PreFold f m where
Methods
preFold :: f (m (f a)) -> f (m a)
class PreUnfold f w where
Methods
preUnfold :: f (w a) -> f (w (f a))
class Distributes f g where
Methods
dist :: f (g a) -> g (f a)
class Functor f => FunctorZero f where
Methods
fzero :: f a
class FunctorZero f => FunctorPlus f where
Methods
fplus :: f a -> f a -> f a
class Functor f => FunctorSplit f where
Methods
fsplit :: f a -> (f a, f a)
show/hide Instances
Produced by Haddock version 2.1.0