category-extras-0.53.6: Various modules and constructs inspired by category theoryContentsIndex
Portabilitynon-portable (rank-2 polymorphism)
MaintainerEdward Kmett <>
Ghani and Johann's Interp/InterpT types from ''Initial Algebra Semantics is Enough!'' and its dual.
type Interpreter y g h = y :~> Ran g h
type InterpreterT f g h = forall y. Functor y => Interpreter y g h -> Interpreter (f y) g h
interpreterAlgebra :: InterpreterT f g h -> HAlgebra f (Ran g h)
algebraInterpreter :: HFunctor f => HAlgebra f (Ran g h) -> InterpreterT f g h
type Cointerpreter y g h = Lan g h :~> y
type CointerpreterT f g h = forall y. Functor y => Cointerpreter y g h -> Cointerpreter (f y) g h
cointerpreterCoalgebra :: CointerpreterT f g h -> HCoalgebra f (Lan g h)
coalgebraCointerpreter :: HFunctor f => HCoalgebra f (Lan g h) -> CointerpreterT f g h
Produced by Haddock version 2.1.0