category-extras-0.53.6: Various modules and constructs inspired by category theoryContentsIndex
Control.Morphism.Synchro
Portabilitynon-portable (rank-2 polymorphism)
Stabilityexperimental
MaintainerEdward Kmett <ekmett@gmail.com>
Description
Martin Erwig's synchromorphisms.
Synopsis
synchro :: QFunctor h Hask Hask => Bialgebra m n c -> (h x (Either a c) -> m c) -> Trialgebra (f x) (g x) (h x) a -> ((h x a, b) -> k x b) -> ((h x a, j x b) -> h x (Either a (g x a, b))) -> Bialgebra (k x) (j x) b -> (g x a, b) -> c
Documentation
synchro :: QFunctor h Hask Hask => Bialgebra m n c -> (h x (Either a c) -> m c) -> Trialgebra (f x) (g x) (h x) a -> ((h x a, b) -> k x b) -> ((h x a, j x b) -> h x (Either a (g x a, b))) -> Bialgebra (k x) (j x) b -> (g x a, b) -> c
synchro d' f d g1 g2 d'' is Martin Erwig's d,d''-synchromorphism to d'. Mostly useful for graph algorithms.
Produced by Haddock version 2.1.0