Tue 15 Sep 2015

## Some Rough Notes on Univalent Foundations and B-Systems, Part I

Posted by Gershom Bazerman under Homotopy Type Theory , Type TheoryNo Comments

I recently attended RDP in Warsaw, where there was quite a bit of work on Homotopy Type Theory, including a special workshop organized to present recent and ongoing work. The organizers of all the events did a fantastic job and there was a great deal of exciting work. I should add that I will not be able to go to RDP next year, as the two constituent central conferences (RTA — Rewriting Techniques and Applications and TLCA — Typed Lambda Calculus and Applications) have merged and changed names. Next year it will now be called FSCD — Formal Structures for Computation and Deduction. So I very much look forward to attending FSCD instead.

In any case, one of the invited speakers was Vladimir Voevodsky, who gave an invited talk on his recent work relating to univalent foundations titled "From Syntax to Semantics of Dependent Type Theories — Formalized”. This was a very clear talk that helped me understand his current research direction and the motivations for it. I also had the benefit of some very useful conversations with others involved in collaboration with some of this work, who patiently answered my questions. The notes below are complimentary to the slides from his talk.

I had sort of understood what the motivation for studying “C-Systems” was, but I had not taken it on myself to look at Voevodsky’s “B-Systems” before, nor had I grasped how his research programme fit together. Since I found this experience enlightening, I figured I might as well write up what I think I understand, with all the usual caveats. Also note, in all the below, by “type theory” I invariably mean the intensional sort. So all the following is in reference to the B-systems paper that Voevodsky has posted on arXiv (arXiv:1410.5389).

That said, if anything I describe here strikes you as funny, it is more likely that I am not describing things right than that the source material is troublesome — i.e. take this with a grain of salt. And bear in mind that I am not attempting to directly paraphrase Voevodsky himself or others I spoke to, but rather I am giving an account of where what they described resonated with me, and filtered through my own examples, etc. Also, if all of the “why and wherefore” is already familiar to you, feel free to skip directly to the “B-Systems” section where I will just discuss Voevodsky’s paper on this topic, and my attempts to understand portions of it. And if you already understand B-Systems, please do reply and explain all the things I’m sure I’m missing!