Homotopy and Directed Type Theory: a Sample

Dan Doel

October 24, 2011

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Type Theory Overview

Judgments

 $\Gamma \vdash \mathsf{ctx}$ $\Gamma \vdash A \text{ type}$ $\Gamma \vdash M : A$

Families

 $\Gamma, x : A \vdash B(x)$ type

Inference

 $\frac{\Gamma_1 \vdash J_1}{\Gamma_2 \vdash J_2}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Type Theory Overview Π and Σ

Formation

$$\frac{\Gamma, x : A \vdash B(x) \text{ type}}{\Gamma \vdash \Pi_{x:A}.B(x) \text{ type}} \quad \frac{\Gamma, x : A \vdash B(x) \text{ type}}{\Gamma \vdash \Sigma_{x:A}.B(x) \text{ type}}$$

Introduction

$$\frac{\Gamma, x: A \vdash M: B(x)}{\Gamma \vdash (\lambda x: A. M): \Pi_{x:A}.B(x)} \quad \frac{\Gamma \vdash M: A \quad \Gamma \vdash N: B(M)}{\Gamma \vdash (M, N): \Sigma_{x:A}.B(x)}$$

Elimination

$$\frac{\Gamma \vdash F : \Pi_{x:A}.B(x) \quad \Gamma \vdash M : A}{\Gamma \vdash F M : B(M)}$$

$$\frac{\Gamma \vdash P : \Sigma_{x:A}.B(x)}{\Gamma \vdash \pi_1 P : A} \quad \frac{\Gamma \vdash P : \Sigma_{x:A}.B(x)}{\Gamma \vdash \pi_2 P : B(\pi_1 P)}$$

Type Theory Overview Inductive types

Define a type as built out of constructors:

data ℕ : type where
 zero : ℕ
 suc : ℕ -> ℕ

Induction principle

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Type Theory Overview Identity types

Definition

data Id A x : A -> type where refl : Id A x x

Elimination

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Computation

Fancy notation: $M \simeq_A N$

Type Theory Overview Identity types

Simplified (but often useful) version of J:

subst : (A : type) -> (P : A -> type)
 -> (x y : A) -> Id A x y
 -> P x -> P y

- Defining property of equality: respected by all predicates
- Very convenient: we needn't know anything about P to know that it respects equality

Recurring theme: how far can we extend this respect?

Type Theory Overview The universe U

Formation

$$\frac{\Gamma \vdash S : U}{\Gamma \vdash U \text{ type}} \quad \frac{\Gamma \vdash S : U}{\Gamma \vdash T(S) \text{ type}}$$

Introduction

$$\overline{\Gamma \vdash 0, 1, 2: U}$$

$$\overline{\Gamma \vdash S: U \quad \Gamma, x: T(S) \vdash F: U}$$

$$\overline{\Gamma \vdash \Pi S F: U}$$

. . .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

No Elimination

► Keep in mind: ≃U

Type Theory Overview

Set-theoretic model

- Types denote sets including U
- Inductive types denote appropriate inductively defined sets
- The identity type denotes equality on said sets
 - We expect identities to be *propositions*.
 - This suggests a second eliminator for identities

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Type Theory Overview Axiom K

Axiom K

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Also called Uniqueness of Identity Proofs (UIP)
- Two motivations
 - Identities are propositions
 - Id is an (indexed) inductive type generated by refl
- But K is not definable from J

Standard and non-standard models

- Peano Arithmetic formalizes the natural numbers
- Similar to our $\mathbb N$ type earlier
- ▶ Induction principle: $P(0) \rightarrow (\forall k.P(k) \rightarrow P(1+k)) \rightarrow \forall n.P(n)$
- Motivation: every natural number is 0 or a successor thereof

- But is this what it says?
- No, there are non-standard models

J as an induction principle

J, interpreted similarly, says, "every identity proof is refl."

- K also says this, but evidently in a different way
- This is similarly a mistranslation of J
- ► Admits (∞-)groupoid/homotopy models

The Homotopy Model ∞ -groupoids

A groupoid is a category ...

$$\frac{A:G}{id_A:A\to A} \quad \frac{f:A\to B\quad g:B\to C}{g\circ f:A\to C} \quad \cdots$$

... in which all elements are invertible

$$\frac{f: A \to B}{f^{-1}: B \to A} \quad \frac{f: A \to B}{f^{-1} \circ f = id_A} \quad \frac{f: A \to B}{f \circ f^{-1} = id_B}$$

An ∞-groupoid has infinitely many levels of transformations, and equations are expected to hold only up to higher equivalences.

Types as ∞ -groupoids

A suspicious coincidence . . .

M: A	$F: M \simeq_A N G: N \simeq_A O$	
$\overline{refl}: M \simeq_A M$	trans $F G : M \simeq_A O$	
$F:M\simeq_A N$	$F:M\simeq_A N$	
$\overline{\operatorname{sym} F : N \simeq_A M}$	\cdots : (trans <i>F</i> (sym <i>F</i>)) $\simeq_{M\simeq_A}$	_M refl

- The above can all be defined using J
- Types together with the identity type naturally form a groupoid
- ► Identity types $M \simeq_A N$ have their own identity types $F \simeq_{M \simeq_A N} G \dots$
- ... and equations in general hold only up to higher identity types
- So types are naturally ∞ -groupoids

Homotopy n-types

- Sometimes, an ∞-groupoid only has finitely many non-trivial levels
- Called an (∞, n) -groupoid, or homotopy *n*-type
- Groupoids can be seen as 1-types, sets as 0-types, propositions as -1-types
 - \blacktriangleright There are "contractible" types, $-2\mbox{-types}$ at the low end

The dimension of a type in this regard is definable in type theory

Homotopy n-types

Contractible : type -> type Contractible A = $\Sigma(x : A)$. $\Pi(y : A)$. (Id A x y)

Proposition : type -> type Proposition A = $\Pi(x \ y \ : \ A)$. Contractible (Id A x y)

Type : $\mathbb{N} \rightarrow$ type \rightarrow type Type zero $A = \Pi(x \ y \ : \ A)$. Proposition (Id $A \times y$) Type (suc n) $A = \Pi(x \ y \ : \ A)$. Type n (Id $A \times y$)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Homotopy n-types

Homotopy -2-types are trivial

- There is an element such that all elements are equivalent to it
- A type is a homotopy (n + 1)-type if its identity types are homotopy n-types
 - Elements (proofs) of a proposition are trivially equivalent to each other (proof irrelevance)
 - Equality of elements of sets is a proposition
 - Objects of a groupoid have sets of isomorphisms between them.

▶ ...

Conclusion

- Intuitionistic type theory already admits this higher-dimensional model
 - This model is incompatible with the K axiom, however
- Our earlier "standard" model treated U as a set. ...
- However, without an inductive eliminator, there is nothing stopping U from being modeled as a higher dimensional type!
 - A groupoid of sets
- U is not provably higher dimensional in standard type theory, of course

The Univalence Axiom

- The traditional model of type theory led us to K
- What does the homotopy model suggest?
 - U should be higher dimensional, how can we get there?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The Univalence Axiom

Equivalence

- We want inhabitants of U to be equivalent if there is an isomorphism between them.
- This is typically defined by the following progression:

IsEquiv : $(f : S \rightarrow T) \rightarrow$ type $S \cong T = \Sigma_{f:S \rightarrow T}$. IsEquiv(f)substEqv : $S \simeq_{U} T \rightarrow S \cong T$ univalence : IsEquiv(substEqv)

SubstEqv being an equivalence implies that there is an inverse from S ≅ T to S ≃_U T

The Univalence Axiom

Consequences

- Isomorphism of sets implies identity
 - Vec $A n \simeq$ Vec $A m \rightarrow n \simeq_{\mathbb{N}} m$?
- Univalence has been shown to imply extensionality of functions

$$(\prod_{x:A} f x \simeq_B g x) \to f \simeq_{A \to B} g$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Higher Inductive Types

We can define new sets via generators using inductive types

Why not define new n-types?

```
data Circle : type where
  base : Circle
  loop : Id Circle base base
ind-Circle :
    (P : Circle -> type)
  -> (p : P base)
  -> (eq : Id (P base) (subst loop p) p)
  -> (c : Circle) -> P c
```

Benefits

Mathematical

- Working up to equivalence is common mathematical practice, handled automatically by homotopy type theory
- \blacktriangleright Intuitionistic type theory is probably the best direct formulation of $\infty\mathchar`-$ groupoids known
- "Practical"
 - Functional extensionality is a useful proof principle for reasoning about programs
 - Equivalence-implies-identity aids in code reuse and abstraction
 - List A and Σ_{n:N}. Vec A n are isomorphic implementations of lists, so any construction on one automatically functions for the other
 - Abstract types and views can be related by equivalence, allowing one to program and prove via the view, while a more efficient abstract type is used internally

Directed Type Theory

 \blacktriangleright Homotopy type theory generalizes from sets to $\infty\mbox{-}{\rm groupoids}$

- We can also generalize from groupoids (symmetric) to categories (directed)
 - Instead of \simeq_A with refl, trans, subst, sym ...
 - ... we have \Longrightarrow_A with id, \circ , map

Directed Type Theory

Some Details

Contexts must now track variances:

$$\frac{\Gamma \vdash \mathsf{ctx}}{\Gamma^{op} \vdash \mathsf{ctx}} \quad \frac{\Gamma \vdash A \text{ type}}{\Gamma, x : A^+ \vdash \mathsf{ctx}} \quad \frac{\Gamma^{op} \vdash A \text{ type}}{\Gamma, x : A^- \vdash \mathsf{ctx}}$$

$$\frac{\Gamma, x : A^{-} \vdash B(x) \text{ type}}{\Gamma \vdash \Pi_{x:A}.B(x) \text{ type}} \quad \frac{\Gamma, x : A^{-} \vdash M : B(x)}{\Gamma \vdash (\lambda x : A.M) : \Pi_{x:A}.B(x)}$$

map acts in response to variance

$$\frac{\Gamma, x : A^{+} \vdash B(x) \text{ type } \Gamma \vdash \alpha : M \Longrightarrow_{A} N}{\Gamma \vdash \mathsf{map}_{x:A^{+}.B(x)} \alpha : B(M) \to B(N)}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Directed Type Theory

Benefits

- Directed types allow an even larger class of transformations to be automatically respected by a large number of constructions
 - Sets and functions
 - Contexts and variable renaming
 - Lambda terms and reduction
- Programming/proving with views and abstract types now needn't require an equivalence between view and implementation
- Higher dimensional directed type theory has the tools for talking about naturality within the language, and may be able to internally support 'free' theorems

Caveats

There is still work to be done in these areas

- The univalence axiom has only been postulated thus far; its computational behavior is an open question
 - Licata and Harper have shown canonicity for a 2-dimensional directed theory, but the approach is different
- Proper hom types have yet to be worked out
 - Instead of Id A \times y, Hom A \times y
 - Composition of Hom A x y with Hom A y z has y in both covariant and contravariant positions

Directed type theory works around the issue for now

Further Reading

The Homotopy Type Theory website

 $\verb+homotopytypetheory.org$

Univalent Foundations (Voevdosky)

math.ias.edu/~vladimir/Site3/Univalent_Foundations.html

Directed Type Theory (Licata and Harper)

www.cs.cmu.edu/~drl/pubs.html www.cs.cmu.edu/~rwh/papers.htm