
Homotopy and Directed Type Theory: a Sample

Dan Doel

October 24, 2011

Type Theory Overview

I Judgments

Γ ` ctx

Γ ` A type

Γ ` M : A

I Families

Γ, x : A ` B(x) type

I Inference

Γ1 ` J1

Γ2 ` J2

Type Theory Overview
Π and Σ

I Formation

Γ, x : A ` B(x) type

Γ ` Πx :A.B(x) type

Γ, x : A ` B(x) type

Γ ` Σx :A.B(x) type

I Introduction

Γ, x : A ` M : B(x)

Γ ` (λx : A.M) : Πx :A.B(x)

Γ ` M : A Γ ` N : B(M)

Γ ` (M,N) : Σx :A.B(x)

I Elimination

Γ ` F : Πx :A.B(x) Γ ` M : A

Γ ` F M : B(M)

Γ ` P : Σx :A.B(x)

Γ ` π1P : A

Γ ` P : Σx :A.B(x)

Γ ` π2P : B(π1P)

Type Theory Overview
Inductive types

I Define a type as built out of constructors:

data N : type where
zero : N
suc : N -> N

I Induction principle

induction : (P : N -> type)
-> P(zero)
-> ((n : N) -> P(n) -> P(suc n))
-> (n : N) -> P(n)

Type Theory Overview
Identity types

I Definition

data Id A x : A -> type where
refl : Id A x x

I Elimination

J : (A : type) -> (x : A)
-> (P : (z : A) -> Id A x z -> type)
-> P x refl
-> (y : A) -> (eq : Id A x y) -> P y eq

I Computation

J A M P PM M refl = PM

I Fancy notation: M 'A N

Type Theory Overview
Identity types

I Simplified (but often useful) version of J:

subst : (A : type) -> (P : A -> type)
-> (x y : A) -> Id A x y
-> P x -> P y

I Defining property of equality: respected by all predicates

I Very convenient: we needn’t know anything about P to know
that it respects equality

I Recurring theme: how far can we extend this respect?

Type Theory Overview
The universe U

I Formation

Γ ` U type

Γ ` S : U

Γ ` T(S) type

I Introduction

Γ ` 0, 1, 2 : U

Γ ` S : U Γ, x : T(S) ` F : U

Γ ` Π S F : U
. . .

I No Elimination

I Keep in mind: 'U

Type Theory Overview
Set-theoretic model

I Types denote sets — including U

I Inductive types denote appropriate inductively defined sets
I The identity type denotes equality on said sets

I We expect identities to be propositions.
I This suggests a second eliminator for identities . . .

Type Theory Overview
Axiom K

I Axiom K

K : (A : type) -> (x : A)
-> (P : Id A x x -> type)
-> P refl -> (eq : Id A x x) -> P eq

I Also called Uniqueness of Identity Proofs (UIP)
I Two motivations

I Identities are propositions
I Id is an (indexed) inductive type generated by refl

I But K is not definable from J

The Homotopy Model
Standard and non-standard models

I Peano Arithmetic formalizes the natural numbers

I Similar to our N type earlier

I Induction principle:
P(0)→ (∀k .P(k)→ P(1 + k))→ ∀n.P(n)

I Motivation: every natural number is 0 or a successor thereof
I But is this what it says?

I No, there are non-standard models

The Homotopy Model
J as an induction principle

I J, interpreted similarly, says, “every identity proof is refl.”
I K also says this, but evidently in a different way

I This is similarly a mistranslation of J

I Admits (∞-)groupoid/homotopy models

The Homotopy Model
∞−groupoids

I A groupoid is a category . . .

A : G

idA : A→ A

f : A→ B g : B → C

g ◦ f : A→ C
· · ·

I . . . in which all elements are invertible

f : A→ B

f −1 : B → A

f : A→ B

f −1 ◦ f = idA

f : A→ B

f ◦ f −1 = idB

I An ∞-groupoid has infinitely many levels of transformations,
and equations are expected to hold only up to higher
equivalences.

The Homotopy Model
Types as ∞-groupoids

I A suspicious coincidence . . .

M : A

refl : M 'A M

F : M 'A N G : N 'A O

trans F G : M 'A O
· · ·

F : M 'A N

sym F : N 'A M

F : M 'A N

· · · : (trans F (sym F)) 'M'AM refl

I The above can all be defined using J

I Types together with the identity type naturally form a
groupoid

I Identity types M 'A N have their own identity types
F 'M'AN G . . .

I . . . and equations in general hold only up to higher identity
types

I So types are naturally ∞-groupoids

The Homotopy Model
Homotopy n-types

I Sometimes, an ∞-groupoid only has finitely many non-trivial
levels

I Called an (∞, n)-groupoid, or homotopy n-type
I Groupoids can be seen as 1-types, sets as 0-types,

propositions as −1-types
I There are “contractible” types, −2-types at the low end

I The dimension of a type in this regard is definable in type
theory

The Homotopy Model
Homotopy n-types

Contractible : type -> type
Contractible A = Σ(x : A). Π(y : A). (Id A x y)

Proposition : type -> type
Proposition A = Π(x y : A). Contractible (Id A x y)

Type : N -> type -> type
Type zero A = Π(x y : A). Proposition (Id A x y)
Type (suc n) A = Π(x y : A). Type n (Id A x y)

The Homotopy Model
Homotopy n-types

I Homotopy −2-types are trivial
I There is an element such that all elements are equivalent to it

I A type is a homotopy (n + 1)-type if its identity types are
homotopy n-types

I Elements (proofs) of a proposition are trivially equivalent to
each other (proof irrelevance)

I Equality of elements of sets is a proposition
I Objects of a groupoid have sets of isomorphisms between

them.
I . . .

The Homotopy Model
Conclusion

I Intuitionistic type theory already admits this
higher-dimensional model

I This model is incompatible with the K axiom, however

I Our earlier “standard” model treated U as a set. . . .
I However, without an inductive eliminator, there is nothing

stopping U from being modeled as a higher dimensional type!
I A groupoid of sets

I U is not provably higher dimensional in standard type theory,
of course

The Univalence Axiom

I The traditional model of type theory led us to K
I What does the homotopy model suggest?

I U should be higher dimensional, how can we get there?

The Univalence Axiom
Equivalence

I We want inhabitants of U to be equivalent if there is an
isomorphism between them.

I This is typically defined by the following progression:

IsEquiv : (f : S → T)→ type

S ∼= T = Σf :S→T . IsEquiv(f)

substEqv : S 'U T → S ∼= T

univalence : IsEquiv(substEqv)

I substEqv being an equivalence implies that there is an inverse
from S ∼= T to S 'U T

The Univalence Axiom
Consequences

I Isomorphism of sets implies identity
I Vec A n ' Vec A m→ n 'N m?

I Univalence has been shown to imply extensionality of functions

(Πx :A.f x 'B g x)→ f 'A→B g

Higher Inductive Types

I We can define new sets via generators using inductive types

I Why not define new n-types?

data Circle : type where
base : Circle
loop : Id Circle base base

ind-Circle :
(P : Circle -> type)

-> (p : P base)
-> (eq : Id (P base) (subst loop p) p)
-> (c : Circle) -> P c

Benefits

I Mathematical
I Working up to equivalence is common mathematical practice,

handled automatically by homotopy type theory
I Intuitionistic type theory is probably the best direct

formulation of ∞-groupoids known

I “Practical”
I Functional extensionality is a useful proof principle for

reasoning about programs
I Equivalence-implies-identity aids in code reuse and abstraction

I List A and Σn:N. Vec An are isomorphic implementations of
lists, so any construction on one automatically functions for
the other

I Abstract types and views can be related by equivalence,
allowing one to program and prove via the view, while a more
efficient abstract type is used internally

Directed Type Theory

I Homotopy type theory generalizes from sets to ∞-groupoids
I We can also generalize from groupoids (symmetric) to

categories (directed)
I Instead of 'A with refl, trans, subst, sym . . .
I . . . we have =⇒A with id, ◦, map

Directed Type Theory
Some Details

I Contexts must now track variances:

Γ ` ctx

Γop ` ctx

Γ ` A type

Γ, x : A+ ` ctx

Γ
op ` A type

Γ, x : A− ` ctx

Γ, x : A
− ` B(x) type

Γ ` Πx :A.B(x) type

Γ, x : A
− ` M : B(x)

Γ ` (λx : A.M) : Πx :A.B(x)

I map acts in response to variance

Γ, x : A
+ ` B(x) type Γ ` α : M =⇒A N

Γ ` mapx :A+ .B(x) α : B(M)→ B(N)

Directed Type Theory
Benefits

I Directed types allow an even larger class of transformations to
be automatically respected by a large number of constructions

I Sets and functions
I Contexts and variable renaming
I Lambda terms and reduction

I Programming/proving with views and abstract types now
needn’t require an equivalence between view and
implementation

I Higher dimensional directed type theory has the tools for
talking about naturality within the language, and may be able
to internally support ‘free’ theorems

Caveats

I There is still work to be done in these areas
I The univalence axiom has only been postulated thus far; its

computational behavior is an open question
I Licata and Harper have shown canonicity for a 2-dimensional

directed theory, but the approach is different

I Proper hom types have yet to be worked out
I Instead of Id A x y, Hom A x y
I Composition of Hom A x y with Hom A y z has y in both

covariant and contravariant positions
I Directed type theory works around the issue for now

Further Reading

I The Homotopy Type Theory website

homotopytypetheory.org

I Univalent Foundations (Voevdosky)

math.ias.edu/~vladimir/Site3/Univalent_Foundations.html

I Directed Type Theory (Licata and Harper)

www.cs.cmu.edu/~drl/pubs.html
www.cs.cmu.edu/~rwh/papers.htm

