
A PARSING TRIFECTA

Edward Kmett

Iteratees, Parsec, and Monoids

Overview

 The Problem

 Deriving Iteratees á la Oleg

 Buffered Iteratees

 Layering Parsec Over Iteratees

 Local Context-Sensitivity

 Monoids From Invariants

 Layering Monoids (Layout, Parsing)

 Conclusion

The Problem

 Monadic parsing is convenient

 Monoids are parallel and incremental

 How to include both feature sets?

Parser Combinators

 Parser combinators make it possible to
express parsers directly in Haskell using an
embedded domain specific language
encoding of your grammar.

 Parsec is the most well-known parser
combinator library in use in Haskell.

Parser Combinator Libraries

 Parsec 3

 Monadic, depth-first, backtracking

 Iteratees

 Monadic, resumable, non-backtracking

 UU-ParsingLib

 Monadic, breadth-first, backtracking

 Parsimony (coming soon)

 Monoidal parsing of Alternative grammars

The Problem In More Detail

 Monadic parsing is convenient

 Monoids are parallel and incremental

 How to include both feature sets?

 People know how to use Parsec effectively.

 Parsec needs the full input and can’t be resumed.

 An efficient parsing monoid can’t be monadic,
because of context-sensitivity

Monoidal Parsing Issues

 As a Monoid we need to parse input chunks
with no contextual information about the
chunks.

 We don’t know how far along in the file we are

 We don’t know if we’re in the middle of parsing a
string

 We don’t know what lexemes are valid in our
current state.

What are our options?

 Walk an Applicative grammar top-down or
bottom up in Earley or CYK style and merge sub-
parses. (Parsimony)

 Extract a small representation of the state
transitions represented by the values spanned by
our monoid for smaller languages. (i.e. Bicyclic,
Regex...)

 Hunt for frequently occurring invariants in the
lexer where context sensitivity vanishes and start
new monadic parsers at those locations, folding
together their results.

Monoid-Wrapped Parsec Issues

 We need Parsec to be able to run up to a point and
block waiting for Input in order for it to work
Monoidally.

 But, Parsec offers getInput, which can be used to
obtain the unparsed portion of the input Stream.

 We need to be able to resume the same Parsec
parser with multiple future parses to deal with
incremental parsing, so this at first seems to be
paradoxical.

Inverting Parsec: Iteratees

 An Iteratee is a monad that consumes input
and performs computation until it needs
more, then asks for more input.

 They are perhaps best understood by
thinking about resumable computations as a
monad.

Partiality as a Monad

data Partial a

= Return a

| Cont (Partial a)

instance Monad Partial where

return = Return

Return a >>= f = f a – the first monad law!

Cont k >>= f = Cont (k >>= f)

runPartial :: Partial a -> Int -> Either (Partial a) a

runPartial (Done a) _ = Right a

runPartial c@(Cont _) 0 = Left c

runPartial (Cont k) !n = runPartial k (n – 1)

Iteratees á la Oleg

data Input = Chunk ByteString | EOF

data Iteratee a

= Return a Input

| Cont (Input -> Iteratee a)

instance Monad Iteratee where

return = Return a (Chunk empty)

Return a (Chunk e) >>= f | null e = k

Return a i >>= f = case f a of

Return b _ -> Return b i

Cont k -> k i

Cont k >>= f = Cont (k >=> f)

-- (>=>) :: (a -> m b) -> (b -> m c) -> a -> m c

Reading input in an Iteratee

next :: Iteratee (Maybe Char)

next = Cont next’

next’ :: Input -> Iteratee (Maybe Char)

next’ EOF = Return Nothing EOF

next’ (Chunk i)

| null i = next

| otherwise = Return (Just (head i)) (Chunk (tail i))

But once it consumes part of the input, it is
gone!

Backtracking Iteratees

 The problem with the default Iteratee design
is that it conflates current position info with
the contents of the buffer.

 We need to retain the full input buffer history
for backtracking purposes, but this requires
an efficient means of concatenating
Bytestrings and indexing into the buffer.
Bytestrings alone, lazy or not, won’t cut it
asymptotically!

Monoids to the rescue

newtype Cursor = Cursor { getCursor :: Int }

deriving (Eq,Ord,Num,Show,Read,Enum)

instance Monoid Cursor where

mempty = 0

mappend = (+)

Efficient Buffers

newtype Chunk = Chunk { getChunk :: S.ByteString } deriving
(Eq,Ord,Show,Read)

instance Measured Cursor Chunk where

measure (Chunk xs) = Cursor (S.length xs)

type Buffer = FingerTree Cursor Chunk

index :: Cursor -> Buffer -> Word8

index !i !t = S.index a $ getCursor (i - measure l) where

(l,r) = F.split (> i) t

Chunk a :< _ = F.viewl r

-- O(log (min (n,m-n))) for m chunks and an offset into the nth chunk

Buffered Iteratee

data Iteratee a

= Done a !Buffer !Bool

| Cont (Buffer -> Bool -> Iteratee a)

instance Monad Iteratee where

return a = Done a F.empty False

Done a h False >>= f | F.null h = f a

Done a h eof >>= f = case f a of

Done b _ _ -> Done b h eof

Cont k -> k h eof

Cont k >>= f = Cont (\h eof -> k h eof >>= f)

Care and Feeding of Iteratees

type Enumerator a = Iteratee a -> Iteratee a

supplyBuffer :: Buffer -> Enumerator a

supplyBuffer b (Cont k) = k b False

supplyBuffer _ other = other

supplyStrictByteString :: S.ByteString -> Enumerator a

supplyStrictByteString = supplyBuffer . F.singleton . Chunk

Generic Supplies

class Supply t where

supply :: t -> Enumerator a

supplyList :: [t] -> Enumerator a

supplyList = foldr (andThen . supply) id

instance Supply a => Supply [a] where

supply = supplyList

instance Supply Buffer where

supply = supplyBuffer

instance Supply Strict.ByteString where ...

instance Supply Char where ...

Supplying EOF

data EOF = EOF

instance Supply EOF where

supply _ (Cont k) = k F.empty True

supply _ (Done a h _) = Done a h True

A Digression: Failure

data Iteratee a

= Done a !Buffer !Bool

| Fail String !Buffer !Bool

| Cont (Buffer -> Bool -> Iteratee a)

instance Monad Iteratee where

return a = Done a F.empty False

Done a h False >>= f | F.null h = f a

Done a h eof >>= f = case f a of

Done b _ _ -> Done b h eof

Cont k -> k h eof

Fail s _ _ -> Fail s h eof

Cont k >>= f = Cont (\h eof -> k h eof >>= f)

Fail s h eof >>= _ = Fail s h eof

fail s = Fail s F.empty False

instance MonadPlus Iteratee where ...

Reading from Buffered Iteratees

get :: Cursor -> Iteratee Word8

get i = Cont getWord8’ where

get’ :: Buffer -> Bool -> Iteratee Word8

get' h eof

| n < measure h = Done (index n h) h eof

| eof = Fail "EOF" h eof

| otherwise = Cont (\h' eof' -> get' (h >< h') eof')

Iteratee-Based Parsec Streams

instance Stream Cursor Iteratee Word8 where

uncons !n = do

w <- get n

return $ Just (c, n + 1)

<|> return Nothing

-- I actually use a Char Stream that does UTF8
decoding, but it won’t fit on a slide!

A UTF8 Iteratee Parsec Stream

instance Stream Cursor Iteratee Char where

uncons !n = (getWord8 n >>= uncons') <|> return Nothing where

uncons' c

| c <= 0x7f =

return $ Just (toEnum (fromEnum c), n + 1)

| c >= 0xc2 && c <= 0xdf = do

d <- getWord8 (n + 1)

return $ Just (b2 c d, n + 2)

| c >= 0xe0 && c <= 0xef = do

d <- getWord8 (n + 1)

e <- getWord8 (n + 2)

return $ Just (b3 c d e, n + 3)

| c >= 0xf0 && c <= 0xf4 = do

d <- getWord8 (n + 1)

e <- getWord8 (n + 2)

f <- getWord8 (n + 3)

return $ Just (b4 c d e f, n + 4)

| otherwise =

return $ Just (replacementChar, n + 1)

-- I lied. It will.

Putting It Together

type P = ParsecT Cursor () Iteratee

parser = string “hello” <|> string “goodbye”

example =

supply EOF $

supply “bye” $

supply “good” $

runParser parser () "-" (Cursor 0)

-- Done “goodbye” (Chunk (pack “goodbye”))

-- note the successful backtrack.

--You can obtain the current cursor location with getInput

Slicing w/ Sharing

sliceIt :: Cursor -> Cursor -> Iteratee S.ByteString

sliceIt !i !j = Cont slice' where

sliceIt' :: Buffer -> Bool -> Iteratee S.ByteString

sliceIt' h eof

| j <= measure h || eof = Done (sliceBuffer h) h eof

| otherwise = Cont $ \h' eof' -> sliceIt' (h >< h') eof'

sliceBuffer :: Buffer -> S.ByteString

sliceBuffer !t

| req <= rmn = Strict.take req first

| otherwise =

Strict.concat $ Lazy.toChunks $

Lazy.take (fromIntegral req) $

Lazy.fromChunks $ first : map getChunk (toList r')

where

(l,r) = F.split (> i) t

Chunk a :< r' = F.viewl r

first = Strict.drop (getCursor (i - measure l)) a

req = getCursor $ j - i

rmn = Strict.length first

Slicing in a Parsec Parser

slice :: Cursor -> Cursor -> P ByteString

slice mark release =

lift (sliceIt mark release)

sliced :: P a -> P ByteString

sliced parse = do

mark <- getInput

parse

release <- getInput

slice mark release

Sliced Recognizers

data Token = Ident ByteString | Symbol ByteString

ident = Ident <$>

sliced (lower >> skipMany isident)

symbol = Symbol <$>

sliced (skipMany isSymbol)

An Iteratee Based Monoid

Assume we have a language where we spot the
invariant in the lexer that after any newline, that is
not preceded with a backslash, we can know that
any lexeme is valid.

We will scan input bytestrings for non-backslashed
newlines and start an iteratee after that.

Since, this comes from an actual language, for which
whitespace is used for Haskell-style layout, we’ll
have to track the whitespace on the edges of our
result

Local Context Sensitivity

Many PL grammars are only locally context-
sensitive.

Real compilers usually use “error productions” at
the next newline or semicolon to resume parsing
after a syntax error

So, scan input for those and start a parsec lexer
that feeds tokens to a Reducer, then merge
those results, monoidally.

Recall: File Position Monoid

data Delta

= Pos !ByteString !Int !Int

| Lines !Int !Int

| Cols !Int

| Tab !Int !Int

Introducing Lex

data LexResult t ts

= LexSegment !Delta ts !Delta

| LexChunk !Delta

deriving (Eq,Show,Data,Typeable)

data Lex t ts

= LexEmpty

| LexRaw !Bool !Buffer !Bool

| LexCooked !Buffer (Iteratee (LexResult t ts))

class Spaceable t where

space :: Delta -> t

class (Spaceable t, Reducer t ts) => Lexable t ts | ts -> t where

lexer :: Iteratee (LexResult t ts)

Making Lex into a Monoid

(<-<) :: Supply c => Iteratee a -> c -> Iteratee a

(<-<) = flip supply

instance Lexable t ts => Monoid (Lex t ts) where

mempty = LexEmpty

LexEmpty `mappend` b = b

a `mappend` LexEmpty = a

LexRaw _ xs False `mappend` LexRaw True ys _ =

LexCooked xs $ lexer <-< tailBuffer ys

LexRaw a xs _ `mappend` LexRaw _ ys d = LexRaw a (xs `mappend` ys) d

LexRaw _ xs _ `mappend` LexCooked ys m = LexCooked (xs `mappend` ys) m

LexCooked xs m `mappend` LexRaw _ ys _ = LexCooked xs (m <-< ys)

LexCooked xs m `mappend` LexCooked ys n = LexCooked xs $ merge (m <-< ys <-< EOF) n

merge :: Lexable t ts =>

Iteratee (LexResult t ts) -> Iteratee (LexResult t ts) -> Iteratee (LexResult t ts)

merge = ... an exercise for the reader ...

Applying Lex

newtype LexSource t ts =

LexSource { getLexSource :: ByteString }

instance Lexable t ts =>

Measured (Lex t ts) (LexSource t ts) where

measure = unit . getLexSource

type Source = FingerTree (Lex t ts) (LexSource t ts)

Just build up a Source, and it can be measured as a
reduction of the token stream.

Going Deeper

 We can feed tokens to any Token-Reducer.

 Use another monoidal layer, using an
Iteratee-based Parsec parser and scan the
lexemes for a nice resumption point like
layout introducing keywords.

 And run a simple left-to-right monadic
calculation that balances
parentheses/brackets/braces and layout.

Bitonic Layout

Process layout monoidally by keeping track of a
monoid of unfinished closing contexts, reduced
results and opening contexts for layout parens, and
bracket-like keyword pairs like case .. of, and if ..
else.

-- ...)...) | ... | (... (... + ...) ...) | ... (... =
-- ...)...) | ... | (...

data Bitonic m

= Bitonic (Seq (Closing m)) m (Seq (Opening m)

Layout typically connotes the detail parser to use inside so we can finish
parsing here, declarations after ‘where/let’, statements after ‘do’, etc.

Conclusion

 We can parse monoidally using Parsec parsers if we plan
ahead this permits incremental and parallel parsing, which
is useful for modern compiler demands:
 Interactive type checking
 “Intellisense” and tab-completion.
 Exact syntax highlighting as you type.

 These same patterns are useful at multiple levels of the
parser. (Lexing, layout, etc.)

 Buffered Iteratees can invert control for Parsec effectively
and, with slicing, improve sharing between tokens and the
source tree.

 Slides and Source will be Available Online via
http://comonad.com/

