
All About All About MonoidsMonoids
Edward Kmett



OverviewOverview

 Monoids (definition, examples)

 Reducers

 Generators

 Benefits of Monoidal Parsing
◦ Incremental Parsing (FingerTrees)

◦ Parallel Parsing (Associativity)

◦ Composing Parsers (Products, Layering)

◦ Compressive Parsing (LZ78, Bentley-McIlroy)

 Going Deeper (Seminearrings)



What is a What is a MonoidMonoid??

 A Monoid is any associative binary 
operation with a unit.

 Associative: (a + b) + c = a + (b + c)

 Unit: (a + 0) = a = (0 + a)

 Examples: 

◦ ((*),1), ((+),0), (max, minBound), ((.),id),  ...



MonoidsMonoids as a as a TypeclassTypeclass

 (from Data.Monoid)

 class Monoid m where

◦ mempty :: m

◦ mappend :: m -> m -> m

◦ mconcat :: [m] -> m

◦ mconcat = foldr mappend mempty



BuiltBuilt--in in monoidmonoid examplesexamples

newtype Sum a = Sum a

instance Num a => Monoid (Sum a) where
mempty = Sum 0

Sum a `mappend` Sum b = Sum (a + b)

newtype Endo a = Endo (a -> a)

instance Monoid (Endo a) where

mempty = id
Endo f `mappend` Endo g = Endo (f . g)



So how can we use them?So how can we use them?

 Data.Foldable provides fold and foldMap

class Functor t => Foldable t where

...

fold :: Monoid m => t m -> m

foldMap :: Monoid m => (a -> m) -> t a -> m

fold = foldMap id



MonoidsMonoids allow succinct definitionsallow succinct definitions

instance Monoid [a] where

mempty = []

mappend = (++)

concat :: [[a]] -> [a]

concat = fold

concatMap :: (a -> [b]) -> [a] -> [b]

concatMap = foldMap



MonoidsMonoids are Compositionalare Compositional

instance (Monoid m, Monoid n) => Monoid (m,n) where

mempty = (mempty,mempty)

(a,b) `mappend` (c,d) = (a `mappend` c, b `mappend` d)



AssociativityAssociativity allows Flexibilityallows Flexibility

We can:

 foldr: a+(b+(c+...))

 foldl: ((a+b)+c)+ ...

 or even consume chunks in parallel:

(.+.+.+.+.+.)+(.+.+.+.+.+.)+(.+.+.+.+.+)+...

 or in a tree like fashion:

((.+.)+(.+.))+((.+.)+(.+0))

 ...



But we always pay full priceBut we always pay full price

 Containers are Monoid-oblivious
 Monoids are Container-oblivious

Can we fix that and admit optimized folds? 
(Reducers)  
◦ (:) is faster than (++) . return

And what about non-Functorial containers? 
(Generators)
◦ Strict and Lazy ByteString, IntSet, etc...

Foldable doesn’t help us here.



MonoidMonoid--specific efficient foldsspecific efficient folds

(from Data.Monoid.Reducer)

class Monoid m => Reducer c m where

unit :: c -> m

snoc :: m -> c -> m

cons :: c -> m -> m

c `cons` m = unit c `mappend` m

m `snoc` c = m `mappend` unit c



Reducers enable faster foldsReducers enable faster folds

 reduceList :: (c `Reducer` m) => [c] -> m

 reduceList = foldr cons mempty

 reduceText :: (Char `Reducer` m) => Text -> m

 reduceText = Text.foldl’ snoc mempty

 (We’ll come back and generalize the 
containers later)



Simple ReducersSimple Reducers

 instance Reducer a [a] where

◦ unit a = [a]

◦ cons = (:)

instance Num a => Reducer a (Sum a) where

unit = Sum

instance Reducer (a -> a) (Endo a) where

unit = Endo



NonNon--Trivial Trivial MonoidsMonoids/Reducers/Reducers

 Tracking Accumulated File Position Info

 FingerTree Concatenation

 Delimiting Words

 Parsing UTF8 Bytes into Chars

 Parsing Regular Expressions

 Recognizing Haskell Layout

 Parsing attributed PEG, CFG, and TAG 
Grammars



Example: File Position InfoExample: File Position Info

-- we track the delta of column #s

data SourcePosition = Cols Int | ...

instance Monoid SourcePosition where

mempty = Cols 0

Cols x `mappend` Cols y = Cols (x + y)

instance Reducer SourcePosition where

unit _ = Cols 1

-- but what about newlines?



Handling NewlinesHandling Newlines

data SourcePosition = Cols Int | Lines Int Int

instance Monoid SourcePosition where

Lines l _ `mappend` Lines l’ c’ = Lines (l + l’) c’

Cols _ `mappend` Lines l’ c’ = Lines l c’

Lines l c `mappend` Cols c’ = Lines l (c + c’)

...

instance Reducer SourcePosition where

unit ‘\n’ = Lines 1 1

unit _ = Cols 1

-- but what about tabs?



Handling TabsHandling Tabs
data SourcePosition = ...| Tabs Int Int

nextTab :: Int -> Int

nextTab !x = x + (8 – (x – 1) `mod` 8)

instance Monoid SourcePosition where

...

Lines l c `mappend` Tab x y = Lines l (nextTab (c + x) + y)

Tab{} `mappend` l@Lines{} = l

Cols x `mappend` Tab x’ y = Tab (x + x’) y

Tab x y `mappend` Cols y’ = Tab x (y + y’)

Tab x y `mappend` Tab x’ y’ = Tab x (nextTab (y + x’) + y’)

instance Reducer Char SourcePosition where

unit ‘\t’ = Tab 0 0

unit ‘\n’ = Line 1 1

unit _ = Cols 1



#line #line pragmaspragmas and start of fileand start of file

data SourcePosition file =

= Pos file !Int !Int

| Line !Int !Int

| Col !Int

| Tab !Int !Int



Example: Parsing UTF8Example: Parsing UTF8

 Valid UTF8 encoded Chars have the form:
◦ [0x00...0x7F]

◦ [0xC0...0xDF] extra

◦ [0xE0...0xEF] extra extra

◦ [0xF0...0xF4] extra extra extra

◦ where extra = [0x80...0xBF] contains 6 bits of 
info in the LSBs and the only valid 
representation is the shortest one for each 
symbol.



UTF8 as a Reducer TransformerUTF8 as a Reducer Transformer

data UTF8 m = ...

instance (Char `Reducer` m) => Monoid (UTF8 m) 

where ...

instance (Char `Reducer` m) => (Byte `Reducer` UTF8 m) 
where ...

Given 7 bytes we must have seen a Char.

We only track up to 3 bytes on either side.



NonNon--FunctorialFunctorial ContainersContainers

class Generator c where

type Elem c :: *

mapReduce :: (e `Reducer` m) => (Elem c -> e) -> c -> m

...

reduce :: (Generator c, Elem c `Reducer` m) => c -> m

reduce = mapReduce id

instance Generator [a] where

type Elem [a] = a

mapReduce f = foldr (cons . f) mempty



Now we can use containerNow we can use container--specific specific 
foldsfolds
instance Generator Strict.ByteString where

type Elem Strict.ByteString = Word8

mapReduce f = Strict.foldl’ (\a b -> snoc a (f b)) mempty

instance Generator IntSet where

type Elem IntSet = Int

mapReduce f = mapReduce f . IntSet.toList

instance Generator (Set a) where

type Elem (Set a) = a

mapReduce f = mapReduce f . Set.toList



Chunking Lazy Chunking Lazy ByteStringsByteStrings

instance Generator Lazy.ByteString where

mapReduce f = 

fold .

parMap rwhnf (mapReduce f) .

Lazy.toChunks



An aside: Dodging An aside: Dodging memptymempty

-- Fleshing out Generator

class Generator c where

type Elem c :: *

mapReduce :: (e `Reducer` m) => (Elem c -> e) -> c -> m

mapTo :: (e `Reducer` m) => (Elem c -> e) -> m -> c -> m

mapFrom :: (e `Reducer` m) => (Elem c -> e) -> c -> m -> m

mapReduce f = mapTo f mempty

mapTo f m = mappend m . mapReduce f

mapFrom f = mappend . mapReduce f

-- minimal definition mapReduce or mapTo



Dodging Dodging memptymempty

instance Generator [c] where

type Elem [c] = c

mapFrom f = foldr (cons . f)

mapReduce f = foldr (cons . f) mempty

instance Generator Strict.ByteString where

type Elem Strict.ByteString = Word8

mapTo f = Strict.foldl’ (\a b -> snoc a (f b))

This avoids some spurious ‘mappend mempty’ cases when 
reducing generators of generators.



Generator Generator CombinatorsCombinators
mapM_ :: (Generator c, Monad m) => (Elem c -> m b) -> c -> m ()

forM_ :: (Generator c, Monad m) => c -> (Elem c -> m b) -> m ()

msum :: (Generator c, MonadPlus m, m a ~ Elem c) => c -> m a

traverse_ :: (Generator c, Applicative f) => (Elem c -> f b) -> c -> f ()

for_ :: (Generator c, Applicative f) => c -> (Elem c -> f b) -> f ()

asum :: (Generator c, Alternative f, f a ~ Elem c) => c -> f a

and :: (Generator c, Elem c ~ Bool) => c -> Bool

or :: (Generator c, Elem c ~ Bool) => c -> Bool

any :: Generator c => (Elem c -> Bool) -> c -> Bool

all :: Generator c => (Elem c -> Bool) -> c -> Bool

foldMap :: (Monoid m, Generator c) => (Elem c -> m) -> c -> m

fold :: (Monoid m, Generator c, Elem c ~ m) => c -> m

toList :: Generator c => c -> [Elem c]

concatMap :: Generator c => (Elem c -> [b]) -> c -> [b]

elem :: (Generator c, Eq (Elem c)) => Elem c -> c -> Bool

filter :: (Generator c, Reducer (Elem c) m) => (Elem c -> Bool) -> c -> m

filterWith :: (Generator c, Reducer (Elem c) m) => (m -> n) -> (Elem c -> Bool) -> c -> n

find :: Generator c => (Elem c -> Bool) -> c -> Maybe (Elem c)

sum :: (Generator c, Num (Elem c)) => c -> Elem c

product :: (Generator c, Num (Elem c)) => c -> Elem c

notElem :: (Generator c, Eq (Elem c)) => Elem c -> c -> Bool



Generator Generator CombinatorsCombinators

 Most generator combinators just use mapReduce
or reduce on an appropriate monoid.

reduceWith f = f . reduce
mapReduceWith f g = f . mapReduce g

sum = reduceWith getSum
and = reduceWith getAll
any = mapReduceWith getAny
toList = reduce
mapM_ = mapReduceWith getAction
...



Putting the pieces together so farPutting the pieces together so far

We can:

 Parse a file as a Lazy ByteString, 

 Ignore alignment of the chunks and parse 
UTF8, automatically cleaning up the ends 
as needed when we glue the reductions 
of our chunks together.

 We can feed that into a complicated Char 
`Reducer` that uses modular components 
like SourcePosition.



Compressive ParsingCompressive Parsing

 LZ78 decompression never compares values 
in the dictionary. Decompress in the 
monoid, caching the results.

 Unlike later refinements (LZW, LZSS, etc.) 
LZ78 doesn’t require every value to initialize 
the dictionary permitting infinite alphabets 
(i.e. Integers)

 We can compress chunkwise, permitting 
parallelism

 Decompression fits on a slide.



Compressive ParsingCompressive Parsing

newtype LZ78 a = LZ78 [Token a]

data Token a = Token a !Int

instance Generator (LZ78 a) where

type Elem (LZ78 a) = a

mapTo f m (LZ78 xs) = mapTo’ f m (Seq.singleton mempty) xs

mapTo' :: (e `Reducer` m) => (a -> e) -> m -> Seq m -> [Token a] -> m

mapTo' _ m _ [] = m

mapTo' f m s (Token c w:ws) = m `mappend` mapTo' f v (s |> v) ws

where v = Seq.index s w `snoc` f c



Other Compressive ParsersOther Compressive Parsers

 The dictionary size in the previous 
example can be bounded, so we can 
provide reuse of common monoids up to
a given size or within a given window.

 Other extensions to LZW (i.e. LZAP) can 
be adapted to LZ78, and work even better 
over monoids than normal!

 Bentley-McIlroy (the basis of bmdiff and 
open-vcdiff) can be used to reuse all 
common submonoids over a given size.



I Want More Structure!I Want More Structure!

A Monoid is to an Applicative as a Right 
Seminearring is to an Alternative. 

If you throw away the argument of an 
Applicative, you get a Monoid, if you throw 
away the argument of an Alternative you get 
a RightSemiNearRing.

In fact any Applicative wrapped around any 
Monoid forms a Monoid, and any 
Alternative wrapped around a Monoid forms 
a RightSemiNearring. 


