category-extras-0.50.3: Various modules and constructs inspired by category theoryContentsIndex
Control.Morphism.Zygo
Portabilitynon-portable (rank-2 polymorphism)
Stabilityexperimental
MaintainerEdward Kmett <ekmett@gmail.com>
Contents
Distributive Law Combinators
Description
Synopsis
type Zygo = (,)
type ZygoT = CoreaderT
zygo :: Functor f => Algebra f b -> GAlgebra f (Zygo b) a -> FixF f -> a
g_zygo :: (Functor f, Comonad w) => GAlgebra f w b -> Dist f w -> GAlgebra f (ZygoT w b) a -> FixF f -> a
distZygo :: Functor f => Algebra f b -> Dist f (Zygo b)
distZygoT :: (Functor f, Comonad w) => GAlgebra f w b -> Dist f w -> Dist f (ZygoT w b)
Documentation
type Zygo = (,)
type ZygoT = CoreaderT
zygo :: Functor f => Algebra f b -> GAlgebra f (Zygo b) a -> FixF f -> a
g_zygo :: (Functor f, Comonad w) => GAlgebra f w b -> Dist f w -> GAlgebra f (ZygoT w b) a -> FixF f -> a
Distributive Law Combinators
distZygo :: Functor f => Algebra f b -> Dist f (Zygo b)
distZygoT :: (Functor f, Comonad w) => GAlgebra f w b -> Dist f w -> Dist f (ZygoT w b)
Produced by Haddock version 2.1.0