categories-0.3: Category LibraryContentsIndex
categories-0.3: Category Library
Defines functors, monads, etc over arbitrary categories rather than just endofunctors on the category of types. Also introduces the notion of a category transformer, which generalizes the notion of an Arrow transformer. Using categories in this fashion we can reconstruct BiArrows correctly without any flotsam in the type, and we can similarly construct a number of other useful notions from category theory that do not form Arrows.
Modules
show/hideControl
show/hideCategory
show/hideControl.Category.Arrow
Control.Category.Arrow.Dual
Control.Category.Based
show/hideControl.Category.Bifunctor
Control.Category.Bifunctor.Associative
Control.Category.Bifunctor.Braided
Control.Category.Bifunctor.Monoidal
show/hideControl.Category.Cartesian
Control.Category.Cartesian.Closed
Control.Category.Classes
Control.Category.Comma
show/hideControl.Category.Comonad
Control.Category.Comonad.Reader
Control.Category.Distributive
Control.Category.Dual
show/hideControl.Category.Functor
Control.Category.Functor.Adjunction
Control.Category.Functor.Algebra
Control.Category.Functor.Applicative
Control.Category.Functor.Composition
Control.Category.Functor.Full
Control.Category.Functor.Identity
Control.Category.Functor.Instances
Control.Category.Functor.Native
Control.Category.Functor.Pointed
Control.Category.Functor.Representable
Control.Category.Groupoid
Control.Category.Hask
Control.Category.Kleisli
Control.Category.Loop
Control.Category.Monad
Control.Category.Morphism
Control.Category.Object
show/hideControl.Category.Transformer
Control.Category.Transformer.Reader
Produced by Haddock version 0.8