
All About Comonads (Part 1)
An incomprehensible guide to the theory and practice of comonadic programming in Haskell

Edward Kmett

http://comonad.com/

Categories

 Categories have objects and arrows

 Every object has an identity arrow

 Arrow composition is associative

Categories

 Categories have objects and arrows

 Every object has an identity arrow

 Arrow composition is associative

 Hask is a category with types as objects

and functions between those types as

arrows.

Categories in Haskell

 In Control.Category (GHC 6.10+):
import Prelude hiding (id,(.))
class Category (⇀) where

id :: a ⇀ a
(.) :: (b ⇀ c) → (a ⇀ b) → (a ⇀ c)

Categories in Haskell

import Prelude hiding (id,(.))
class Category (⇀) where

id :: a ⇀ a
(.) :: (b ⇀ c) → (a ⇀ b) → (a ⇀ c)

instance Category (→) where
id x = x
(f . g) x = f (g x)

Categories in Haskell

class Category (⇀) where
id :: a ⇀ a
(.) :: (b ⇀ c) → (a ⇀ b) → (a ⇀ c)

The dual category Cop of a category C has
arrows in the opposite direction.

data Dual k a b = Dual (k b a)
instance Category (⇀) => Category (Dual (⇀)) where

id = Dual id
Dual f . Dual g = Dual (g . f)

Functors

 Let C and D be categories

 A functor F from C to D maps

◦ objects of C onto objects of D

◦ arrows of C onto arrows of D

while preserving the identity morphisms

and composition of morphisms:

F (idX) = idF(X)

F (g . F) = F g . F f

Functors in Haskell

class Functor f where
fmap :: (a → b) → f a → f b

requiring the following two laws:
1.) fmap id = id
2.) fmap (g . f) = fmap g . fmap f
Note that (2) above follows as a free theorem from the type

of fmap, so you only need to check (1)!

Functors in Haskell

type (⇀) = (→)
class Functor f where

fmap :: (a ⇀ b) → (f a ⇀ f b)

requiring the following two laws:
1.) fmap id = id
2.) fmap (g . f) = fmap g . fmap f
Note that (2) above follows as a free theorem from the type

of fmap, so you only need to check (1)!

Functors in Haskell

type (⇀) = (→)
class Functor f where

fmap :: (a ⇀ b) → (f a ⇀ f b)
 Ignores the object mapping and focuses

on arrows

Cofunctor = Functor

type (⇀) = (→)
class Functor f where

fmap :: (a ⇀ b) → (f a ⇀ f b)
class Cofunctor f where

cofmap :: (b ⇀ a) → (f b ⇀ f a)

It’s the same thing!

Cofunctor /= ContravariantFunctor

type (⇀) = (→)
class Functor f where

fmap :: (a ⇀ b) → (f a ⇀ f b)
class Cofunctor f where

cofmap :: (b ⇀ a) → (f b ⇀ f a)
class ContravariantFunctor f where

contrafmap :: (b ⇀ a) → (f a ⇀ f b)
Nothing said arrows had to point the same way!

Example: Contravariant Functor
class ContravariantFunctor f where

contrafmap :: (b → a) → f a → f b

newtype Test a = Test { runTest :: a -> Bool }
instance ContravariantFunctor Test where

contrafmap f (Test g) = Test (g . f)

isZero :: Test Int
isZero = Test (==0)

isEmpty :: Test [a]
isEmpty = contrafmap length isZero

result :: Bool
result = runTest isEmpty ‚Hello‛

Functors in Haskell Redux

type (⇀) = (→)
class Functor f where

fmap :: (a ⇀ b) → (f a ⇀ f b)
 Ignores the object mapping and focuses

on arrows

 Models only covariant Hask

endofunctors!

Functors in category-extras
class Functor f where

fmap :: (a → b) → f a → f b

class (Category (⇀), Category (⇁)) =>
Functor’ f (⇀) (⇁) | f (⇀) → (⇁), f (⇁) → (⇀) where
fmap’ :: (a ⇀ b) → (f a ⇁ f b)

Now contravariant endofunctors from C are
just functors from Cop.

See Control.Functor.Categorical

Functors in category-extras

 As an aside if you prefer type families…

class (Category (Dom f), Category (Cod f)) => Functor’ f
where

type Dom f :: * → * → *
type Cod f :: * → * → *
fmap’ :: Dom f a b → Cod f (f a) (f b)

Monads in Haskell

class Monad m where
return :: a → m a
(>>=) :: m a → (a → m b) → m b

and some laws we’ll revisit later:

1.) return a >>= f = f a
2.) m >>= return = m
3.) (m >>= f) >>= g = m >>= (\x -> f x >>= g)

Monads in Haskell

class Monad m where
return :: a → m a
(>>=) :: m a → (a → m b) → m b

Seems rather object-centric!

Monads in Haskell

class Monad m where
return :: a → m a
(>>=) :: m a → (a → m b) → m b

type (⇀) = (→)
class Monad’ m where

return :: a ⇀ m a
(>>=) :: m a → (a ⇀ m b) → m b

Monads in Haskell

class Monad m where
return :: a → m a
(>>=) :: m a → (a → m b) → m b

type (⇀) = (→)
class Monad’ m where

return :: a ⇀ m a
(=<<) :: (a ⇀ m b) → m a → m b

Monads in Haskell

class Monad m where
return :: a → m a
(>>=) :: m a → (a → m b) → m b

type (⇀) = (→)
class Monad’ m where

return :: a ⇀ m a
(=<<) :: (a ⇀ m b) → (m a ⇀ m b)

Monads in Haskell

class Monad m where
return :: a → m a
(>>=) :: m a → (a → m b) → m b

class Category (⇀) => Monad’ m (⇀) where
return :: a ⇀ m a
(=<<) :: (a ⇀ m b) → (m a ⇀ m b)

Monads in Haskell

class Monad m where
return :: a → m a
(>>=) :: m a → (a → m b) → m b

class Category (⇀) => Monad’ m (⇀) where
return :: a ⇀ m a
bind :: (a ⇀ m b) → (m a ⇀ m b)

Now we’re only talking about arrows!
The original Haskell definition required a category with

‘Exponentials.’ This definition does not.

Monads in Haskell

class Functor m => Monad m where
return :: a → m a
bind :: (a → m b) → (m a → m b)

class Functor’ m (⇀) (⇀) => Monad’ m (⇀) where
return :: a ⇀ m a
bind :: (a ⇀ m b) → (m a ⇀ m b)

See Control.Monad.Categorical

Monad laws revisited

class Functor m => Monad m where
return :: a → m a
bind :: (a → m b) → (m a → m b)

So in this terminology the monad laws are:

1.) bind return = id
2.) bind f . return = f
3.) bind f . bind g = bind (bind g . f)

So Why the Fuss?

 A comonad over C is a monad over Cop.

 So we want to be able to turn the arrows

around. (>>=) was muddling our thinking

by mixing arrows from Hask and

“exponentials” from the category in

question.

Comonads in Haskell

type (⇀) = (→)
class Functor m => Monad m where

return :: a ⇀ m a
bind :: (a ⇀ m b) → (m a ⇀ m b)

class Functor m => Comonad m where
coreturn :: m a ⇀ a
cobind :: (m b ⇀ a) → (m b ⇀ m a)

Comonads in Haskell

type (⇀) = (→)
class Functor m => Monad m where

return :: a ⇀ m a
bind :: (a ⇀ m b) → (m a ⇀ m b)

class Functor m => Comonad m where
coreturn :: m a ⇀ a
cobind :: (m b ⇀ a) → (m b ⇀ m a)

So Functor = Cofunctor, but Monad /= Comonad.

Comonads in Haskell

type (⇀) = (→)
class Functor m => Monad m where

return :: a ⇀ m a
bind :: (a ⇀ m b) → (m a ⇀ m b)

class Functor w => Comonad w where
coreturn :: w a ⇀ a
cobind :: (w b ⇀ a) → (w b ⇀ w a)

Comonads in Haskell

type (⇀) = (→)
class Functor m => Monad m where

return :: a ⇀ m a
bind :: (a ⇀ m b) → (m a ⇀ m b)

class Functor w => Comonad w where
coreturn :: w a ⇀ a
cobind :: (w a ⇀ b) → (w a ⇀ w b)

Comonads in Haskell

type (⇀) = (→)
class Functor m => Monad m where

return :: a ⇀ m a
bind :: (a ⇀ m b) → (m a ⇀ m b)

class Functor w => Comonad w where
extract :: w a ⇀ a
extend :: (w a ⇀ b) → (w a ⇀ w b)

Comonads in Haskell

class Functor w => Comonad w where
extract :: w a → a
extend :: (w a → b) → (w a → w b)

With 3 laws
1.) extend extract = id
2.) extract . extend f = f
3.) extend f . extend g = extend (f . extend g)

Monad Join and Bind

join :: Monad m => m (m a) ⇀ m a
join = bind id

bind :: Monad m => (a ⇀ m b) → (m a ⇀ m b)
bind f = join . fmap f

So, we can define a monad with either
1.) return, join and fmap
2.) return and bind.

Comonad Duplicate and Extend

duplicate :: Comonad w => w a ⇀ w (w a)
duplicate = extend id

extend :: Comonad w => (w a ⇀ b) → (w a ⇀ w b)
extend f = fmap f . duplicate

We can define a comonad with either
1.) extract, duplicate and fmap
2.) extract and extend

Exercise: The Product Comonad
Given:

data Product e a = Product e a
class Functor w => Comonad w where

extract :: w a -> a
extend :: (w a -> b) -> w a -> w b
extend f = fmap f . duplicate

duplicate :: w a -> w (w a)
duplicate = extend id

Derive:
instance Functor (Product e) – or instance Functor ((,)e)
instance Comonad (Product e) – or instance Comonad ((,)e)

