
All About Comonads (Part 1)
An incomprehensible guide to the theory and practice of comonadic programming in Haskell

Edward Kmett

http://comonad.com/

Categories

 Categories have objects and arrows

 Every object has an identity arrow

 Arrow composition is associative

Categories

 Categories have objects and arrows

 Every object has an identity arrow

 Arrow composition is associative

 Hask is a category with types as objects

and functions between those types as

arrows.

Categories in Haskell

 In Control.Category (GHC 6.10+):
import Prelude hiding (id,(.))
class Category (⇀) where

id :: a ⇀ a
(.) :: (b ⇀ c) → (a ⇀ b) → (a ⇀ c)

Categories in Haskell

import Prelude hiding (id,(.))
class Category (⇀) where

id :: a ⇀ a
(.) :: (b ⇀ c) → (a ⇀ b) → (a ⇀ c)

instance Category (→) where
id x = x
(f . g) x = f (g x)

Categories in Haskell

class Category (⇀) where
id :: a ⇀ a
(.) :: (b ⇀ c) → (a ⇀ b) → (a ⇀ c)

The dual category Cop of a category C has
arrows in the opposite direction.

data Dual k a b = Dual (k b a)
instance Category (⇀) => Category (Dual (⇀)) where

id = Dual id
Dual f . Dual g = Dual (g . f)

Functors

 Let C and D be categories

 A functor F from C to D maps

◦ objects of C onto objects of D

◦ arrows of C onto arrows of D

while preserving the identity morphisms

and composition of morphisms:

F (idX) = idF(X)

F (g . F) = F g . F f

Functors in Haskell

class Functor f where
fmap :: (a → b) → f a → f b

requiring the following two laws:
1.) fmap id = id
2.) fmap (g . f) = fmap g . fmap f
Note that (2) above follows as a free theorem from the type

of fmap, so you only need to check (1)!

Functors in Haskell

type (⇀) = (→)
class Functor f where

fmap :: (a ⇀ b) → (f a ⇀ f b)

requiring the following two laws:
1.) fmap id = id
2.) fmap (g . f) = fmap g . fmap f
Note that (2) above follows as a free theorem from the type

of fmap, so you only need to check (1)!

Functors in Haskell

type (⇀) = (→)
class Functor f where

fmap :: (a ⇀ b) → (f a ⇀ f b)
 Ignores the object mapping and focuses

on arrows

Cofunctor = Functor

type (⇀) = (→)
class Functor f where

fmap :: (a ⇀ b) → (f a ⇀ f b)
class Cofunctor f where

cofmap :: (b ⇀ a) → (f b ⇀ f a)

It’s the same thing!

Cofunctor /= ContravariantFunctor

type (⇀) = (→)
class Functor f where

fmap :: (a ⇀ b) → (f a ⇀ f b)
class Cofunctor f where

cofmap :: (b ⇀ a) → (f b ⇀ f a)
class ContravariantFunctor f where

contrafmap :: (b ⇀ a) → (f a ⇀ f b)
Nothing said arrows had to point the same way!

Example: Contravariant Functor
class ContravariantFunctor f where

contrafmap :: (b → a) → f a → f b

newtype Test a = Test { runTest :: a -> Bool }
instance ContravariantFunctor Test where

contrafmap f (Test g) = Test (g . f)

isZero :: Test Int
isZero = Test (==0)

isEmpty :: Test [a]
isEmpty = contrafmap length isZero

result :: Bool
result = runTest isEmpty ‚Hello‛

Functors in Haskell Redux

type (⇀) = (→)
class Functor f where

fmap :: (a ⇀ b) → (f a ⇀ f b)
 Ignores the object mapping and focuses

on arrows

 Models only covariant Hask

endofunctors!

Functors in category-extras
class Functor f where

fmap :: (a → b) → f a → f b

class (Category (⇀), Category (⇁)) =>
Functor’ f (⇀) (⇁) | f (⇀) → (⇁), f (⇁) → (⇀) where
fmap’ :: (a ⇀ b) → (f a ⇁ f b)

Now contravariant endofunctors from C are
just functors from Cop.

See Control.Functor.Categorical

Functors in category-extras

 As an aside if you prefer type families…

class (Category (Dom f), Category (Cod f)) => Functor’ f
where

type Dom f :: * → * → *
type Cod f :: * → * → *
fmap’ :: Dom f a b → Cod f (f a) (f b)

Monads in Haskell

class Monad m where
return :: a → m a
(>>=) :: m a → (a → m b) → m b

and some laws we’ll revisit later:

1.) return a >>= f = f a
2.) m >>= return = m
3.) (m >>= f) >>= g = m >>= (\x -> f x >>= g)

Monads in Haskell

class Monad m where
return :: a → m a
(>>=) :: m a → (a → m b) → m b

Seems rather object-centric!

Monads in Haskell

class Monad m where
return :: a → m a
(>>=) :: m a → (a → m b) → m b

type (⇀) = (→)
class Monad’ m where

return :: a ⇀ m a
(>>=) :: m a → (a ⇀ m b) → m b

Monads in Haskell

class Monad m where
return :: a → m a
(>>=) :: m a → (a → m b) → m b

type (⇀) = (→)
class Monad’ m where

return :: a ⇀ m a
(=<<) :: (a ⇀ m b) → m a → m b

Monads in Haskell

class Monad m where
return :: a → m a
(>>=) :: m a → (a → m b) → m b

type (⇀) = (→)
class Monad’ m where

return :: a ⇀ m a
(=<<) :: (a ⇀ m b) → (m a ⇀ m b)

Monads in Haskell

class Monad m where
return :: a → m a
(>>=) :: m a → (a → m b) → m b

class Category (⇀) => Monad’ m (⇀) where
return :: a ⇀ m a
(=<<) :: (a ⇀ m b) → (m a ⇀ m b)

Monads in Haskell

class Monad m where
return :: a → m a
(>>=) :: m a → (a → m b) → m b

class Category (⇀) => Monad’ m (⇀) where
return :: a ⇀ m a
bind :: (a ⇀ m b) → (m a ⇀ m b)

Now we’re only talking about arrows!
The original Haskell definition required a category with

‘Exponentials.’ This definition does not.

Monads in Haskell

class Functor m => Monad m where
return :: a → m a
bind :: (a → m b) → (m a → m b)

class Functor’ m (⇀) (⇀) => Monad’ m (⇀) where
return :: a ⇀ m a
bind :: (a ⇀ m b) → (m a ⇀ m b)

See Control.Monad.Categorical

Monad laws revisited

class Functor m => Monad m where
return :: a → m a
bind :: (a → m b) → (m a → m b)

So in this terminology the monad laws are:

1.) bind return = id
2.) bind f . return = f
3.) bind f . bind g = bind (bind g . f)

So Why the Fuss?

 A comonad over C is a monad over Cop.

 So we want to be able to turn the arrows

around. (>>=) was muddling our thinking

by mixing arrows from Hask and

“exponentials” from the category in

question.

Comonads in Haskell

type (⇀) = (→)
class Functor m => Monad m where

return :: a ⇀ m a
bind :: (a ⇀ m b) → (m a ⇀ m b)

class Functor m => Comonad m where
coreturn :: m a ⇀ a
cobind :: (m b ⇀ a) → (m b ⇀ m a)

Comonads in Haskell

type (⇀) = (→)
class Functor m => Monad m where

return :: a ⇀ m a
bind :: (a ⇀ m b) → (m a ⇀ m b)

class Functor m => Comonad m where
coreturn :: m a ⇀ a
cobind :: (m b ⇀ a) → (m b ⇀ m a)

So Functor = Cofunctor, but Monad /= Comonad.

Comonads in Haskell

type (⇀) = (→)
class Functor m => Monad m where

return :: a ⇀ m a
bind :: (a ⇀ m b) → (m a ⇀ m b)

class Functor w => Comonad w where
coreturn :: w a ⇀ a
cobind :: (w b ⇀ a) → (w b ⇀ w a)

Comonads in Haskell

type (⇀) = (→)
class Functor m => Monad m where

return :: a ⇀ m a
bind :: (a ⇀ m b) → (m a ⇀ m b)

class Functor w => Comonad w where
coreturn :: w a ⇀ a
cobind :: (w a ⇀ b) → (w a ⇀ w b)

Comonads in Haskell

type (⇀) = (→)
class Functor m => Monad m where

return :: a ⇀ m a
bind :: (a ⇀ m b) → (m a ⇀ m b)

class Functor w => Comonad w where
extract :: w a ⇀ a
extend :: (w a ⇀ b) → (w a ⇀ w b)

Comonads in Haskell

class Functor w => Comonad w where
extract :: w a → a
extend :: (w a → b) → (w a → w b)

With 3 laws
1.) extend extract = id
2.) extract . extend f = f
3.) extend f . extend g = extend (f . extend g)

Monad Join and Bind

join :: Monad m => m (m a) ⇀ m a
join = bind id

bind :: Monad m => (a ⇀ m b) → (m a ⇀ m b)
bind f = join . fmap f

So, we can define a monad with either
1.) return, join and fmap
2.) return and bind.

Comonad Duplicate and Extend

duplicate :: Comonad w => w a ⇀ w (w a)
duplicate = extend id

extend :: Comonad w => (w a ⇀ b) → (w a ⇀ w b)
extend f = fmap f . duplicate

We can define a comonad with either
1.) extract, duplicate and fmap
2.) extract and extend

Exercise: The Product Comonad
Given:

data Product e a = Product e a
class Functor w => Comonad w where

extract :: w a -> a
extend :: (w a -> b) -> w a -> w b
extend f = fmap f . duplicate

duplicate :: w a -> w (w a)
duplicate = extend id

Derive:
instance Functor (Product e) – or instance Functor ((,)e)
instance Comonad (Product e) – or instance Comonad ((,)e)

