All About Comonads (Part I)

An incomprehensible guide to the theory and practice of comonadic programming in Haskell

Edward Kmett

http://comonad.com/

Categories

- Categories have objects and arrows
- Every object has an identity arrow
- Arrow composition is associative

Categories

- Categories have objects and arrows
- Every object has an identity arrow
- Arrow composition is associative
- Hask is a category with types as objects and functions between those types as arrows.

Categories in Haskell

- In Control.Category (GHC 6.10+): import Prelude hiding (id,(.)) class Category $(\boldsymbol{\rightharpoonup})$ where

$$
\text { id }:: \mathrm{a} \rightharpoonup \mathrm{a}
$$

$$
(.)::\left(\mathrm{b} \rightharpoonup_{c}\right) \longrightarrow(\mathrm{a} \rightharpoonup \mathrm{~b}) \longrightarrow(\mathrm{a} \rightharpoonup \mathrm{c})
$$

Categories in Haskell

import Prelude hiding (id,(.))
class Category $(\boldsymbol{\rightharpoonup})$ where

$$
\text { id }:: \mathrm{a} \rightharpoonup \mathrm{a}
$$

$$
(.)::(\mathrm{b} \rightharpoonup \mathrm{c}) \longrightarrow(\mathrm{a} \rightharpoonup \mathrm{~b}) \longrightarrow(\mathrm{a} \rightharpoonup \mathrm{c})
$$

instance Category (\longrightarrow) where

$$
\text { id } x=x
$$

$$
(\mathrm{f} \cdot \mathrm{~g}) \mathrm{x}=\mathrm{f}(\mathrm{~g} \mathrm{x})
$$

Categories in Haskell

class Category $(\boldsymbol{\rightharpoonup})$ where

$$
\text { id }:: \mathrm{a} \text { ص }
$$

$$
\text { (.) }::(\mathrm{b} \rightharpoonup \mathrm{c}) \longrightarrow(\mathrm{a} \rightharpoonup \mathrm{~b}) \longrightarrow(\mathrm{a} \rightharpoonup \mathrm{c})
$$

The dual category Cop of a category C has arrows in the opposite direction.
data Dual k a b = Dual (k b a)
instance Category $(\boldsymbol{\rightharpoonup})=>$ Category $(\operatorname{Dual}(\boldsymbol{\rightharpoonup})$) where id = Dual id
Dual f. Dual g = Dual (g.f)

Functors

- Let C and D be categories
- A functor F from C to D maps
- objects of C onto objects of D
- arrows of C onto arrows of D
while preserving the identity morphisms and composition of morphisms:
$\mathrm{F}\left(\mathrm{id}_{\mathrm{X}}\right)=\mathrm{id}_{\mathrm{F}(\mathrm{X})}$
$F(g . F)=F g . F f$

Functors in Haskell

class Functor f where

$$
\mathrm{fmap}::(\mathrm{a} \longrightarrow \mathrm{~b}) \longrightarrow \mathrm{fa} \longrightarrow \mathrm{fb}
$$

requiring the following two laws:
1.) \quad fmap id $=\mathrm{id}$
2.) fmap ($\mathrm{g} . \mathrm{f})=\mathrm{fmap} \mathrm{g}$. fmap f

Note that (2) above follows as a free theorem from the type of fmap, so you only need to check (1)!

Functors in Haskell

type $(\boldsymbol{\rightharpoonup})=(\longrightarrow)$
class Functor f where

$$
\text { fmap }::(\mathrm{a} \rightharpoonup \mathrm{~b}) \longrightarrow(\mathrm{fa} \rightharpoonup \mathrm{fb})
$$

requiring the following two laws:
1.) \quad fmap id $=\mathrm{id}$
2.) fmap ($\mathrm{g} \cdot \mathrm{f}$) $=\mathrm{fmap} \mathrm{g} . \mathrm{fmap} \mathrm{f}$

Note that (2) above follows as a free theorem from the type of fmap, so you only need to check (1)!

Functors in Haskell

type $(\boldsymbol{\rightharpoonup})=(\longrightarrow)$
class Functor f where

$$
\text { fmap }::(\mathrm{a} \rightharpoonup \mathrm{~b}) \longrightarrow(\mathrm{fa} \rightharpoonup \mathrm{fb})
$$

- Ignores the object mapping and focuses on arrows

Cofunctor $=$ Functor

type $(\boldsymbol{\rightharpoonup})=(\longrightarrow)$
class Functor f where
fmap $::(\mathrm{a} \rightharpoonup \mathrm{b}) \longrightarrow(\mathrm{fa} \rightharpoonup \mathrm{fb})$
class Cofunctor f where

$$
\operatorname{cofmap}::(\mathrm{b} \rightharpoonup \mathrm{a}) \longrightarrow(\mathrm{fb} \rightharpoonup \mathrm{fa})
$$

It's the same thing!

Cofunctor /= ContravariantFunctor

type $(\boldsymbol{\rightharpoonup})=(\longrightarrow)$
class Functor f where

$$
\text { fmap }::(\mathrm{a} \rightharpoonup \mathrm{~b}) \longrightarrow(\mathrm{fa} \rightharpoonup \mathrm{fb})
$$

class Cofunctor f where

$$
\operatorname{cofmap}::(\mathrm{b} \rightharpoonup \mathrm{a}) \longrightarrow(\mathrm{fb} \rightharpoonup \mathrm{fa})
$$

class ContravariantFunctor f where

$$
\text { contrafmap }::(\mathrm{b} \rightharpoonup \mathrm{a}) \longrightarrow(\mathrm{fa} \rightharpoonup \mathrm{f} b)
$$

Nothing said arrows had to point the same way!

Example: Contravariant Functor

```
class ContravariantFunctor f where
    contrafmap :: (b\longrightarrowa)}\longrightarrow\textrm{fa}\longrightarrow\textrm{fb
newtype Test a = Test { runTest :: a >> Bool }
instance ContravariantFunctor Test where
    contrafmap f(Test g) = Test (g.f)
isZero :: Test Int
isZero = Test (==0)
isEmpty :: Test [a]
isEmpty = contrafmap length isZero
result :: Bool
result = runTest isEmpty "Hello"
```


Functors in Haskell Redux

type $(\boldsymbol{\rightharpoonup})=(\longrightarrow)$
class Functor f where

$$
\text { fmap }::(\mathrm{a} \rightharpoonup \mathrm{~b}) \longrightarrow(\mathrm{fa} \rightharpoonup \mathrm{fb})
$$

- Ignores the object mapping and focuses on arrows
- Models only covariant Hask endofunctors!

Functors in category-extras

class Functor f where

$$
\mathrm{fmap}::(\mathrm{a} \longrightarrow \mathrm{~b}) \longrightarrow \mathrm{fa} \longrightarrow \mathrm{fb}
$$

class (Category $(\boldsymbol{\rightharpoonup})$, Category $(\rightharpoondown))=>$
Functor' $f(\rightharpoonup)(\rightharpoondown) \mid f(\rightharpoonup) \longrightarrow(\rightharpoondown), f(\rightharpoondown) \longrightarrow(\rightharpoonup)$ where fmap' $::(\mathrm{a} \rightharpoonup \mathrm{b}) \longrightarrow(\mathrm{f} a \longrightarrow \mathrm{f} \mathrm{b})$

Now contravariant endofunctors from C are just functors from $\mathrm{C}^{\circ \mathrm{P}}$.

See Control.Functor.Categorical

Functors in category-extras

- As an aside if you prefer type families...
class (Category $($ Dom f), Category $($ Cod f) $)=>$ Functor' f where
type $\operatorname{Dom} f::$ * $\longrightarrow^{*} \longrightarrow$ *
type $\operatorname{Cod} \mathrm{f}::$ * \longrightarrow * \longrightarrow * fmap' :: Dom fable $\operatorname{Cod} f(f a)(f b)$

Monads in Haskell

 class Monad m where$$
\text { return }:: \mathrm{a} \longrightarrow \mathrm{~m} \mathrm{a}
$$

$$
(\gg=):: \mathrm{m} \mathrm{a} \longrightarrow(\mathrm{a} \longrightarrow \mathrm{~m} \mathrm{~b}) \longrightarrow \mathrm{m} \mathrm{~b}
$$

and some laws we'll revisit later:

1.) return $\mathrm{a} \gg=\mathrm{f}=\mathrm{fa}$
2.) $m \gg=$ return $=m$
3.) $(\mathrm{m} \gg=\mathrm{f}) \gg=\mathrm{g}=\mathrm{m} \gg=(\mathrm{x} \rightarrow \mathrm{f} \mathrm{x} \gg=\mathrm{g})$

Monads in Haskell

class Monad m where

return $:: \mathrm{a} \longrightarrow \mathrm{m}$ a

$$
(\gg=):: \mathrm{m} \mathrm{a} \longrightarrow(\mathrm{a} \longrightarrow \mathrm{~m} \mathrm{~b}) \longrightarrow \mathrm{m} \mathrm{~b}
$$

Seems rather object-centric!

Monads in Haskell

 class Monad m where```
return :: a }\longrightarrow\textrm{m}
```

$(\gg=):: \mathrm{m} \mathrm{a} \longrightarrow(\mathrm{a} \longrightarrow \mathrm{mb}) \longrightarrow \mathrm{mb}$
type $(\boldsymbol{\rightharpoonup})=(\longrightarrow)$
class Monad' $m$ where

$$
\text { return }:: \mathrm{a} \rightharpoonup \mathrm{~m} \text { a }
$$

$$
(\gg=):: \mathrm{m} \mathrm{a} \longrightarrow(\mathrm{a} \rightharpoonup \mathrm{~m} \mathrm{~b}) \longrightarrow \mathrm{m} \mathrm{~b}
$$

## Monads in Haskell

 class Monad m where```
return :: a }\longrightarrow\textrm{m}
```

$(\gg=):: \mathrm{m} \mathrm{a} \longrightarrow(\mathrm{a} \longrightarrow \mathrm{mb}) \longrightarrow \mathrm{mb}$
type $(\boldsymbol{\rightharpoonup})=(\longrightarrow)$
class Monad' m where

$$
\begin{aligned}
& \text { return }:: \mathrm{a} \rightharpoonup \mathrm{~m} \mathrm{a} \\
& (=\ll)::(\mathrm{a} \rightharpoonup \mathrm{~m} \mathrm{~b}) \longrightarrow \mathrm{m} \mathrm{a} \longrightarrow \mathrm{mb}
\end{aligned}
$$

Monads in Haskell

 class Monad m where$$
\text { return }:: \mathrm{a} \longrightarrow \mathrm{~m} \mathrm{a}
$$

$$
(\gg=):: \mathrm{m} \mathrm{a} \longrightarrow(\mathrm{a} \longrightarrow \mathrm{~m} \mathrm{~b}) \longrightarrow \mathrm{m} \mathrm{~b}
$$

type $(\boldsymbol{\rightharpoonup})=(\longrightarrow)$
class Monad' m where

$$
\begin{aligned}
& \text { return :: } \mathrm{a} \rightharpoonup \mathrm{~m} \mathrm{a} \\
& (=\ll)::(\mathrm{a} \rightharpoonup \mathrm{~m} \mathrm{~b}) \longrightarrow(\mathrm{m} \mathrm{a} \rightharpoonup \mathrm{~m} \mathrm{~b})
\end{aligned}
$$

Monads in Haskell

class Monad m where

$$
\begin{aligned}
& \text { return :: } \mathrm{a} \longrightarrow \mathrm{~m} \mathrm{a} \\
& (\gg=):: \mathrm{m} \mathrm{a} \longrightarrow(\mathrm{a} \longrightarrow \mathrm{mb}) \longrightarrow \mathrm{m} \mathrm{~b}
\end{aligned}
$$

class Category $(\boldsymbol{\rightharpoonup})=>$ Monad' $m(\boldsymbol{\rightharpoonup})$ where
return :: a $\downarrow \mathrm{ma}$

$$
(=\ll)::(\mathrm{a} \rightharpoonup \mathrm{mb}) \longrightarrow(\mathrm{ma} \rightharpoonup \mathrm{mb})
$$

Monads in Haskell

class Monad m where

$$
\begin{aligned}
& \text { return }:: \mathrm{a} \longrightarrow \mathrm{~m} \mathrm{a} \\
& (\gg=):: \mathrm{m} \mathrm{a} \longrightarrow(\mathrm{a} \longrightarrow \mathrm{mb}) \longrightarrow \mathrm{m} \mathrm{~b}
\end{aligned}
$$

class Category $(\boldsymbol{\rightharpoonup})=>$ Monad' $m(\nu)$ where

$$
\text { return }:: \mathrm{a} \rightharpoonup \mathrm{~m} \text { a }
$$

$$
\text { bind }::(\mathrm{a} \rightharpoonup \mathrm{mb}) \longrightarrow(\mathrm{m} \mathrm{a} \rightharpoonup \mathrm{mb})
$$

Now we're only talking about arrows!
The original Haskell definition required a category with 'Exponentials.' This definition does not.

Monads in Haskell

class Functor $\mathrm{m}=>$ Monad m where

$$
\text { return }:: \mathrm{a} \longrightarrow \mathrm{~m} \mathrm{a}
$$

$$
\text { bind }::(\mathrm{a} \longrightarrow \mathrm{~m} \mathrm{~b}) \longrightarrow(\mathrm{m} \mathrm{a} \longrightarrow \mathrm{~m} \mathrm{~b})
$$

class Functor' $\mathrm{m}(\rightharpoonup)(\rightharpoonup)=>$ Monad' $\mathrm{m}(\rightharpoonup)$ where return :: a $\downarrow \mathrm{m}$ a
bind $::(\mathrm{a} \rightharpoonup \mathrm{mb}) \longrightarrow(\mathrm{ma} \rightharpoonup \mathrm{mb})$

See Control.Monad.Categorical

Monad laws revisited

class Functor $\mathrm{m}=>$ Monad m where

```
return :: a }\longrightarrow\textrm{m}\mathrm{ a
bind :: (a }\longrightarrow\textrm{mb})\longrightarrow(\textrm{ma}\longrightarrow\textrm{mb}
```

So in this terminology the monad laws are:
1.) bind return = id
2.) bind f. return $=f$
3.) bind f. bind $\mathrm{g}=$ bind (bind $\mathrm{g} . \mathrm{f})$

So Why the Fuss?

- A comonad over C is a monad over Cop.
- So we want to be able to turn the arrows around. (>>=) was muddling our thinking by mixing arrows from Hask and "exponentials" from the category in question.

Comonads in Haskell

type $(\boldsymbol{\rightharpoonup})=(\longrightarrow)$
class Functor $\mathrm{m}=>$ Monad m where

$$
\text { return }:: \mathrm{a} \rightharpoonup \mathrm{~m} \text { a }
$$

$$
\text { bind }::(\mathrm{a} \rightharpoonup \mathrm{~m} b) \longrightarrow(\mathrm{ma} \rightharpoonup \mathrm{mb})
$$

class Functor $\mathrm{m}=>$ Comonad m where

$$
\begin{aligned}
& \text { coreturn }:: \mathrm{ma} \rightharpoonup \mathrm{a} \\
& \text { cobind }::(\mathrm{m} \mathrm{~b} \rightharpoonup \mathrm{a}) \longrightarrow(\mathrm{mb} \rightharpoonup \mathrm{~m} \mathrm{a})
\end{aligned}
$$

Comonads in Haskell

type $(\boldsymbol{\rightharpoonup})=(\longrightarrow)$
class Functor $m=>$ Monad m where

$$
\text { return }:: \mathrm{a} \rightharpoonup \mathrm{~m} \text { a }
$$

$$
\text { bind }::(\mathrm{a} \rightharpoonup \mathrm{mb}) \longrightarrow(\mathrm{ma} \rightharpoonup \mathrm{mb})
$$

class Functor $\mathrm{m}=>$ Comonad m where

$$
\begin{aligned}
& \text { coreturn }:: \mathrm{ma} \rightharpoonup \mathrm{a} \\
& \text { cobind }::(\mathrm{m} \mathrm{~b} \rightharpoonup \mathrm{a}) \longrightarrow(\mathrm{mb} \rightharpoonup \mathrm{~m} \mathrm{a})
\end{aligned}
$$

So Functor $=$ Cofunctor, but Monad $/=$ Comonad.

Comonads in Haskell

type $(\boldsymbol{\rightharpoonup})=(\longrightarrow)$

class Functor $\mathrm{m}=>$ Monad m where

$$
\text { return }:: \mathrm{a} \rightharpoonup \mathrm{~m} \text { a }
$$

$$
\text { bind }::(\mathrm{a} \rightharpoonup \mathrm{mb}) \longrightarrow(\mathrm{ma} \rightharpoonup \mathrm{mb})
$$

class Functor w => Comonad w where

$$
\begin{aligned}
& \text { coreturn }:: \mathrm{w} \mathrm{a} \rightharpoonup_{\mathrm{a}} \\
& \text { cobind }::\left(\mathrm{wb} \rightharpoonup_{\mathrm{a}}\right) \longrightarrow\left(\mathrm{wb} \rightharpoonup_{\mathrm{w}} \mathrm{a}\right)
\end{aligned}
$$

Comonads in Haskell

type $(\boldsymbol{\rightharpoonup})=(\longrightarrow)$
class Functor m => Monad m where

$$
\text { return }:: \mathrm{a} \rightharpoonup \mathrm{~m} \text { a }
$$

$$
\text { bind }::(\mathrm{a} \rightharpoonup \mathrm{~m} b) \longrightarrow(\mathrm{ma} \rightharpoonup \mathrm{mb})
$$

class Functor w => Comonad w where

$$
\begin{aligned}
& \text { coreturn }:: \mathrm{wa} \rightharpoonup \mathrm{a} \\
& \text { cobind }::(\mathrm{wa} \rightharpoonup \mathrm{~b}) \longrightarrow\left(\mathrm{wa} \rightharpoonup_{\mathrm{w}} \mathrm{~b}\right)
\end{aligned}
$$

Comonads in Haskell

type $(\boldsymbol{\rightharpoonup})=(\longrightarrow)$

class Functor $m=>$ Monad m where

$$
\text { return }:: \mathrm{a} \rightharpoonup \mathrm{~m} \text { a }
$$

$$
\text { bind }::(\mathrm{a} \rightharpoonup \mathrm{~m} b) \longrightarrow(\mathrm{ma} \rightharpoonup \mathrm{~m} b)
$$

class Functor w => Comonad w where

$$
\begin{aligned}
& \text { extract :: w a } \boldsymbol{\mathrm { a }} \text { a } \\
& \text { extend }::(\mathrm{wa} \rightharpoonup \mathrm{~b}) \longrightarrow(\mathrm{wa} \rightharpoonup \mathrm{w} b)
\end{aligned}
$$

Comonads in Haskell

class Functor w => Comonad w where

```
extract :: w a }\longrightarrow\mathrm{ a
extend :: (w a \longrightarrow b) \longrightarrow( w a }\longrightarrow\textrm{w b}
```

With 3 laws
1.) extend extract = id
2.) extract . extend $f=f$
3.) extend f. extend g = extend (f. extend g)

Monad Join and Bind

$$
\begin{aligned}
& \text { join }:: \text { Monad } \mathrm{m}=>\mathrm{m}(\mathrm{~m} \mathrm{a}) \rightharpoonup \mathrm{m} \text { a } \\
& \text { join }=\text { bind id }
\end{aligned}
$$

bind :: Monad $\mathrm{m}=>(\mathrm{a} \rightharpoonup \mathrm{mb}) \longrightarrow(\mathrm{ma} \rightharpoonup \mathrm{mb})$ bind $\mathrm{f}=$ join. fmap f

So, we can define a monad with either
1.) return, join and fmap
2.) return and bind.

Comonad Duplicate and Extend

duplicate :: Comonad w => w a $\rightharpoonup \mathrm{w}$ (w a) duplicate $=$ extend id

extend :: Comonad $\mathrm{w}=>(\mathrm{wa} \rightharpoonup \mathrm{b}) \longrightarrow(\mathrm{wa} \rightharpoonup \mathrm{w} b)$ extend $\mathrm{f}=\mathrm{fmap} \mathrm{f}$. duplicate

We can define a comonad with either
1.) extract, duplicate and fmap
2.) extract and extend

Exercise:The Product Comonad

Given:

$$
\begin{aligned}
& \text { data Product e a }=\text { Product e a } \\
& \text { class Functor } \mathrm{w}=>\text { Comonad } \mathrm{w} \text { where } \\
& \text { extract }:: \mathrm{w} \mathrm{a} \rightarrow \mathrm{a} \\
& \text { extend }::(\mathrm{w} \text { a } \rightarrow \mathrm{b})->\mathrm{w} \text { a } \rightarrow \mathrm{w} \mathrm{~b} \\
& \text { extend } \mathrm{f}=\text { fmap } \mathrm{f} . \text { duplicate } \\
& \text { duplicate }:: \mathrm{w} \mathrm{a} \rightarrow \mathrm{w}(\mathrm{w} \mathrm{a}) \\
& \text { duplicate }=\text { extend id }
\end{aligned}
$$

Derive:

instance Functor (Product e) - or instance Functor ((,)e)
instance Comonad (Product e) - or instance Comonad ((,)e)

