All About Comonads (Part 1)

An incomprehensible guide to the theory and practice of comonadic programming in Haskell

Edward Kmett

0

http://comonad.com/

Categories

- Categories have objects and arrows
- Every object has an identity arrow
- Arrow composition is associative

Categories

- Categories have objects and arrows
- Every object has an identity arrow
- Arrow composition is associative
- **Hask** is a category with types as objects and functions between those types as arrows.

Categories in Haskell

• In Control.Category (GHC 6.10+): import Prelude hiding (id,(.))

class Category () where

id :: a 📥 a

$$(.) :: (b \rightharpoonup c) \longrightarrow (a \rightharpoonup b) \longrightarrow (a \rightharpoonup c)$$

Categories in Haskell

import Prelude hiding (id,(.)) class Category (\rightarrow) where id :: a \rightarrow a (.) :: (b \rightarrow c) \rightarrow (a \rightarrow b) \rightarrow (a \rightarrow c)

instance Category (→) where
id x = x
(f . g) x = f (g x)

Categories in Haskell

class Category (\frown) where id :: a \frown a (.) :: (b \frown c) \rightarrow (a \frown b) \rightarrow (a \frown c)

The dual category C^{op} of a category C has arrows in the opposite direction.

data Dual k a b = Dual (k b a)
instance Category () => Category (Dual ()) where
id = Dual id
Dual f . Dual g = Dual (g . f)

Functors

- Let C and D be categories
- A functor F from C to D maps
 objects of C onto objects of D
 arrows of C onto arrows of D
 while preserving the identity morphisms and composition of morphisms:

$$F (id_X) = id_{F(X)}$$
$$F (g . F) = F g . F f$$

Functors in Haskell

class Functor f where

fmap :: $(a \rightarrow b) \rightarrow f a \rightarrow f b$

requiring the following two laws:

- 1.) fmap id = id
- 2.) fmap $(g \cdot f) = fmap g \cdot fmap f$

Note that (2) above follows as a free theorem from the type of fmap, so you only need to check (1)!

Functors in Haskell

type $(\rightarrow) = (\rightarrow)$

class Functor f where

fmap :: $(a \rightarrow b) \rightarrow (f a \rightarrow f b)$

requiring the following two laws:

- 1.) fmap id = id
- 2.) fmap $(g \cdot f) = fmap g \cdot fmap f$

Note that (2) above follows as a free theorem from the type of fmap, so you only need to check (1)!

Functors in Haskell

type $(\frown) = (\rightarrow)$

class Functor f where

fmap :: $(a \rightarrow b) \rightarrow (f a \rightarrow f b)$

 Ignores the object mapping and focuses on arrows

Cofunctor = Functor

type $(\rightarrow) = (\rightarrow)$

class Functor f where

fmap ::
$$(a \rightarrow b) \rightarrow (f a \rightarrow f b)$$

class Cofunctor f where

$$cofmap :: (b \rightharpoonup a) \rightarrow (f b \rightharpoonup f a)$$

It's the same thing!

Cofunctor /= ContravariantFunctor

type () = ()

class Functor f where

fmap :: $(a \rightarrow b) \rightarrow (f a \rightarrow f b)$

class Cofunctor f where

 $cofmap :: (b \rightharpoonup a) \rightarrow (f b \rightharpoonup f a)$

class ContravariantFunctor f where

contrafmap :: $(b \rightarrow a) \rightarrow (f a \rightarrow f b)$

Nothing said arrows had to point the same way!

Example: Contravariant Functor

class ContravariantFunctor f where

contrafmap :: $(b \rightarrow a) \rightarrow f a \rightarrow f b$

newtype Test a = Test { runTest :: a -> Bool }
instance ContravariantFunctor Test where
 contrafmap f (Test g) = Test (g . f)

isZero :: Test Int isZero = Test (==0)

isEmpty :: Test [a]
isEmpty = contrafmap length isZero

result :: Bool result = runTest isEmpty "Hello"

Functors in Haskell Redux

type $(\frown) = (\rightarrow)$

class Functor f where

fmap :: $(a \rightarrow b) \rightarrow (f a \rightarrow f b)$

- Ignores the object mapping and focuses on arrows
- Models only covariant Hask endofunctors!

Functors in category-extras

class Functor f where

fmap :: $(a \rightarrow b) \rightarrow f a \rightarrow f b$

class (Category (\rightarrow), Category (\neg)) => Functor' f (\rightarrow) (\neg) | f (\rightarrow) \rightarrow (\neg), f (\neg) \rightarrow (\rightarrow) where fmap' :: (a \rightarrow b) \rightarrow (f a \rightarrow f b)

Now contravariant endofunctors from C are just functors from C^{op}.

See Control.Functor.Categorical

Functors in category-extras

• As an aside if you prefer type families...

class (Category (Dom f), Category (Cod f)) => Functor' f where

type Dom f :: * \rightarrow * \rightarrow *

type Cod f :: * \rightarrow * \rightarrow *

fmap' :: Dom f a b \rightarrow Cod f (f a) (f b)

class Monad m where

return :: a \rightarrow m a

 $(>>=)::m a \longrightarrow (a \longrightarrow m b) \longrightarrow m b$

and some laws we'll revisit later:

1.) return a >>= f = f a
2.) m >>= return = m
3.) (m >>= f) >>= g = m >>= (\x -> f x >>= g)

class Monad m where

return :: a \rightarrow m a

 $(>>=) :: m a \longrightarrow (a \longrightarrow m b) \longrightarrow m b$

Seems rather object-centric!

class Monad m where

return :: a \rightarrow m a

 $(>>=) :: m a \longrightarrow (a \longrightarrow m b) \longrightarrow m b$

type $(\frown) = (\rightarrow)$ class Monad' m where

> return :: a \rightharpoonup m a (>>=) :: m a \rightarrow (a \rightharpoonup m b) \rightarrow m b

class Monad m where

return :: a \rightarrow m a

 $(>>=) :: m a \longrightarrow (a \longrightarrow m b) \longrightarrow m b$

type $(\frown) = (\rightarrow)$ class Monad' m where

> return :: a \rightharpoonup m a (=<<) :: (a \rightharpoonup m b) \rightarrow m a \rightarrow m b

class Monad m where

return :: a \rightarrow m a

 $(>>=) :: m a \longrightarrow (a \longrightarrow m b) \longrightarrow m b$

type $(\rightarrow) = (\rightarrow)$ class Monad' m where

> return :: $a \rightharpoonup m a$ (=<<) :: $(a \rightharpoonup m b) \rightarrow (m a \rightharpoonup m b)$

class Monad m where

return :: a \rightarrow m a

 $(>>=) :: m a \longrightarrow (a \longrightarrow m b) \longrightarrow m b$

class Category $(\rightarrow) \Rightarrow$ Monad' m (\rightarrow) where return :: a \rightarrow m a $(=<<) :: (a \rightarrow m b) \rightarrow (m a \rightarrow m b)$

class Monad m where

return :: $a \rightarrow m a$ (>>=) :: $m a \rightarrow (a \rightarrow m b) \rightarrow m b$

class Category (\rightarrow) => Monad' m (\rightarrow) where return :: a \rightarrow m a bind :: (a \rightarrow m b) \rightarrow (m a \rightarrow m b)

Now we're only talking about arrows! The original Haskell definition required a category with 'Exponentials.' This definition does not.

class Functor m => Monad m where

return :: a \rightarrow m a

bind :: $(a \rightarrow m b) \rightarrow (m a \rightarrow m b)$

class Functor' m () () => Monad' m () wherereturn :: a <math> h m abind :: (a $h m b) \to (m a h m b)$

See Control.Monad.Categorical

Monad laws revisited

class Functor m => Monad m where

return :: $a \rightarrow m a$ bind :: $(a \rightarrow m b) \rightarrow (m a \rightarrow m b)$

So in this terminology the monad laws are:

- 1.) bind return = id
- 2.) bind f . return = f
- 3.) bind f . bind g = bind (bind g . f)

So Why the Fuss?

- A comonad over C is a monad over C^{op}.
- So we want to be able to turn the arrows around. (>>=) was muddling our thinking by mixing arrows from Hask and "exponentials" from the category in question.

type $(\frown) = (\rightarrow)$

class Functor m => Monad m where

return :: $a \rightarrow m a$ bind :: $(a \rightarrow m b) \rightarrow (m a \rightarrow m b)$

class Functor m => Comonad m where coreturn :: m a \rightarrow a cobind :: (m b \rightarrow a) \rightarrow (m b \rightarrow m a)

type $(\frown) = (\rightarrow)$

class Functor m => Monad m where

return :: $a \rightharpoonup m a$ bind :: $(a \rightharpoonup m b) \rightarrow (m a \rightharpoonup m b)$

class Functor m => Comonad m where coreturn :: m a \rightarrow a cobind :: (m b \rightarrow a) \rightarrow (m b \rightarrow m a)

So Functor = Cofunctor, **but** Monad /= Comonad.

type $(\frown) = (\rightarrow)$

class Functor m => Monad m where

return :: $a \rightarrow m a$ bind :: $(a \rightarrow m b) \rightarrow (m a \rightarrow m b)$

class Functor $w \Rightarrow$ Comonad w where coreturn :: $w a \rightarrow a$ cobind :: $(w b \rightarrow a) \rightarrow (w b \rightarrow w a)$

type $(\frown) = (\rightarrow)$

class Functor m => Monad m where

return :: $a \rightarrow m a$ bind :: $(a \rightarrow m b) \rightarrow (m a \rightarrow m b)$

class Functor w => Comonad w where coreturn :: w a \rightarrow a cobind :: (w a \rightarrow b) \rightarrow (w a \rightarrow w b)

type $(\frown) = (\rightarrow)$

class Functor m => Monad m where

return :: $a \rightarrow m a$ bind :: $(a \rightarrow m b) \rightarrow (m a \rightarrow m b)$

class Functor w => Comonad w where

extract :: w a \rightharpoonup a extend :: (w a \rightharpoonup b) \rightarrow (w a \rightharpoonup w b)

class Functor w => Comonad w where

extract :: w a \rightarrow a

extend :: $(w a \rightarrow b) \rightarrow (w a \rightarrow w b)$

With 3 laws

1.) extend extract = id

2.) extract . extend f = f

3.) extend f . extend g = extend (f . extend g)

Monad Join and Bind

join :: Monad m => m (m a) — m a join = bind id

bind :: Monad m => $(a \rightharpoonup m b) \rightarrow (m a \rightharpoonup m b)$ bind f = join . fmap f

So, we can define a monad with either1.) return, join and fmap2.) return and bind.

Comonad Duplicate and Extend

duplicate :: Comonad w => w a → w (w a) duplicate = extend id

extend :: Comonad w => (w a \rightharpoonup b) \rightarrow (w a \rightharpoonup w b) extend f = fmap f . duplicate

We can define a comonad with either 1.) extract, duplicate and fmap 2.) extract and extend

Exercise: The Product Comonad

Given:

data Product e a = Product e a class Functor w => Comonad w where extract :: w a -> a extend :: (w a -> b) -> w a -> w b extend f = fmap f . duplicate

duplicate :: w a -> w (w a) duplicate = extend id

Derive:

instance Functor (Product e) – or instance Functor ((,)e)instance Comonad (Product e) – or instance Comonad ((,)e)